|
import torch |
|
import random |
|
import numpy as np |
|
from modules.utils import rng |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def deterministic(seed=0, cudnn_deterministic=False): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch_rn = rng.convert_np_to_torch(seed) |
|
torch.manual_seed(torch_rn) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed_all(torch_rn) |
|
|
|
if cudnn_deterministic: |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
def is_numeric(obj): |
|
if isinstance(obj, str): |
|
try: |
|
float(obj) |
|
return True |
|
except ValueError: |
|
return False |
|
elif isinstance(obj, (np.integer, np.signedinteger, np.unsignedinteger)): |
|
return True |
|
elif isinstance(obj, np.floating): |
|
return True |
|
elif isinstance(obj, (int, float)): |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
class SeedContext: |
|
def __init__(self, seed, cudnn_deterministic=False): |
|
assert is_numeric(seed), "Seed must be an number." |
|
|
|
try: |
|
self.seed = int(np.clip(int(seed), -1, 2**32 - 1, out=None, dtype=np.int64)) |
|
except Exception as e: |
|
raise ValueError(f"Seed must be an integer, but: {type(seed)}") |
|
|
|
self.seed = seed |
|
self.cudnn_deterministic = cudnn_deterministic |
|
self.state = None |
|
|
|
if isinstance(seed, str) and seed.isdigit(): |
|
self.seed = int(seed) |
|
|
|
if isinstance(self.seed, float): |
|
self.seed = int(self.seed) |
|
|
|
if self.seed == -1: |
|
self.seed = random.randint(0, 2**32 - 1) |
|
|
|
def __enter__(self): |
|
self.state = ( |
|
torch.get_rng_state(), |
|
random.getstate(), |
|
np.random.get_state(), |
|
torch.backends.cudnn.deterministic, |
|
torch.backends.cudnn.benchmark, |
|
) |
|
|
|
try: |
|
deterministic(self.seed, cudnn_deterministic=self.cudnn_deterministic) |
|
except Exception as e: |
|
|
|
|
|
|
|
logger.warning( |
|
f"Deterministic field, with: <{type(self.seed)}> {self.seed}" |
|
) |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
torch.set_rng_state(self.state[0]) |
|
random.setstate(self.state[1]) |
|
np.random.set_state(self.state[2]) |
|
torch.backends.cudnn.deterministic = self.state[3] |
|
torch.backends.cudnn.benchmark = self.state[4] |
|
|
|
|
|
if __name__ == "__main__": |
|
print(is_numeric("1234")) |
|
print(is_numeric("12.34")) |
|
print(is_numeric("-1234")) |
|
print(is_numeric("abc123")) |
|
print(is_numeric(np.int32(10))) |
|
print(is_numeric(np.float64(10.5))) |
|
print(is_numeric(10)) |
|
print(is_numeric(10.5)) |
|
print(is_numeric(np.int8(10))) |
|
print(is_numeric(np.uint64(10))) |
|
print(is_numeric(np.float16(10.5))) |
|
print(is_numeric([1, 2, 3])) |
|
|