zhzluke96
update
d2b7e94
import gradio as gr
from modules.Enhancer.ResembleEnhance import unload_enhancer
from modules.models import unload_chat_tts
from modules.speaker import speaker_mgr
from modules.webui import webui_config
from modules.webui.webui_utils import get_speaker_names
from .ft_ui_utils import get_datasets_listfile, run_speaker_ft
from .ProcessMonitor import ProcessMonitor
class SpeakerFt:
def __init__(self):
self.process_monitor = ProcessMonitor()
self.status_str = "idle"
def unload_main_thread_models(self):
unload_chat_tts()
unload_enhancer()
def run(
self,
batch_size: int,
epochs: int,
lr: str,
train_text: bool,
data_path: str,
select_speaker: str = "",
):
if self.process_monitor.process:
return
self.unload_main_thread_models()
spk_path = None
if select_speaker != "" and select_speaker != "none":
select_speaker = select_speaker.split(" : ")[1].strip()
spk = speaker_mgr.get_speaker(select_speaker)
if spk is None:
return ["Speaker not found"]
spk_filename = speaker_mgr.get_speaker_filename(spk.id)
spk_path = f"./data/speakers/{spk_filename}"
command = ["python3", "-m", "modules.finetune.train_speaker"]
command += [
f"--batch_size={batch_size}",
f"--epochs={epochs}",
f"--data_path={data_path}",
]
if train_text:
command.append("--train_text")
if spk_path:
command.append(f"--init_speaker={spk_path}")
self.status("Training process starting")
self.process_monitor.start_process(command)
self.status("Training started")
def status(self, text: str):
self.status_str = text
def flush(self):
stdout, stderr = self.process_monitor.get_output()
return f"{self.status_str}\n{stdout}\n{stderr}"
def clear(self):
self.process_monitor.stdout = ""
self.process_monitor.stderr = ""
self.status("Logs cleared")
def stop(self):
self.process_monitor.stop_process()
self.status("Training stopped")
def create_speaker_ft_tab(demo: gr.Blocks):
spk_ft = SpeakerFt()
speakers, speaker_names = get_speaker_names()
speaker_names = ["none"] + speaker_names
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("🎛️hparams")
dataset_input = gr.Dropdown(
label="Dataset", choices=get_datasets_listfile()
)
lr_input = gr.Textbox(label="Learning Rate", value="1e-2")
epochs_input = gr.Slider(
label="Epochs", value=10, minimum=1, maximum=100, step=1
)
batch_size_input = gr.Slider(
label="Batch Size", value=4, minimum=1, maximum=64, step=1
)
train_text_checkbox = gr.Checkbox(label="Train text_loss", value=True)
init_spk_dropdown = gr.Dropdown(
label="Initial Speaker",
choices=speaker_names,
value="none",
)
with gr.Group():
start_train_btn = gr.Button("Start Training")
stop_train_btn = gr.Button("Stop Training")
clear_train_btn = gr.Button("Clear logs")
with gr.Column(scale=5):
with gr.Group():
# log
gr.Markdown("📜logs")
log_output = gr.Textbox(
show_label=False, label="Log", value="", lines=20, interactive=True
)
start_train_btn.click(
spk_ft.run,
inputs=[
batch_size_input,
epochs_input,
lr_input,
train_text_checkbox,
dataset_input,
init_spk_dropdown,
],
outputs=[],
)
stop_train_btn.click(spk_ft.stop)
clear_train_btn.click(spk_ft.clear)
if webui_config.experimental:
demo.load(spk_ft.flush, every=1, outputs=[log_output])