zhzluke96
update
f367757
from typing import Union
import gradio as gr
import numpy as np
import torch
import torch.profiler
from modules import refiner
from modules.api.impl.handler.SSMLHandler import SSMLHandler
from modules.api.impl.handler.TTSHandler import TTSHandler
from modules.api.impl.model.audio_model import AdjustConfig
from modules.api.impl.model.chattts_model import ChatTTSConfig, InferConfig
from modules.api.impl.model.enhancer_model import EnhancerConfig
from modules.api.utils import calc_spk_style
from modules.data import styles_mgr
from modules.Enhancer.ResembleEnhance import apply_audio_enhance as _apply_audio_enhance
from modules.normalization import text_normalize
from modules.SentenceSplitter import SentenceSplitter
from modules.speaker import Speaker, speaker_mgr
from modules.ssml_parser.SSMLParser import SSMLBreak, SSMLSegment, create_ssml_parser
from modules.utils import audio
from modules.utils.hf import spaces
from modules.webui import webui_config
def get_speakers():
return speaker_mgr.list_speakers()
def get_speaker_names() -> tuple[list[Speaker], list[str]]:
speakers = get_speakers()
def get_speaker_show_name(spk):
if spk.gender == "*" or spk.gender == "":
return spk.name
return f"{spk.gender} : {spk.name}"
speaker_names = [get_speaker_show_name(speaker) for speaker in speakers]
speaker_names.sort(key=lambda x: x.startswith("*") and "-1" or x)
return speakers, speaker_names
def get_styles():
return styles_mgr.list_items()
def load_spk_info(file):
if file is None:
return "empty"
try:
spk: Speaker = Speaker.from_file(file)
infos = spk.to_json()
return f"""
- name: {infos.name}
- gender: {infos.gender}
- describe: {infos.describe}
""".strip()
except:
return "load failed"
def segments_length_limit(
segments: list[Union[SSMLBreak, SSMLSegment]], total_max: int
) -> list[Union[SSMLBreak, SSMLSegment]]:
ret_segments = []
total_len = 0
for seg in segments:
if isinstance(seg, SSMLBreak):
ret_segments.append(seg)
continue
total_len += len(seg["text"])
if total_len > total_max:
break
ret_segments.append(seg)
return ret_segments
@torch.inference_mode()
@spaces.GPU(duration=120)
def apply_audio_enhance(audio_data, sr, enable_denoise, enable_enhance):
return _apply_audio_enhance(audio_data, sr, enable_denoise, enable_enhance)
@torch.inference_mode()
@spaces.GPU(duration=120)
def synthesize_ssml(
ssml: str,
batch_size=4,
enable_enhance=False,
enable_denoise=False,
eos: str = "[uv_break]",
spliter_thr: int = 100,
pitch: float = 0,
speed_rate: float = 1,
volume_gain_db: float = 0,
normalize: bool = True,
headroom: float = 1,
progress=gr.Progress(track_tqdm=True),
):
try:
batch_size = int(batch_size)
except Exception:
batch_size = 8
ssml = ssml.strip()
if ssml == "":
raise gr.Error("SSML is empty, please input some SSML")
parser = create_ssml_parser()
segments = parser.parse(ssml)
max_len = webui_config.ssml_max
segments = segments_length_limit(segments, max_len)
if len(segments) == 0:
raise gr.Error("No valid segments in SSML")
infer_config = InferConfig(
batch_size=batch_size,
spliter_threshold=spliter_thr,
eos=eos,
# NOTE: SSML not support `infer_seed` contorl
# seed=42,
)
adjust_config = AdjustConfig(
pitch=pitch,
speed_rate=speed_rate,
volume_gain_db=volume_gain_db,
normalize=normalize,
headroom=headroom,
)
enhancer_config = EnhancerConfig(
enabled=enable_denoise or enable_enhance or False,
lambd=0.9 if enable_denoise else 0.1,
)
handler = SSMLHandler(
ssml_content=ssml,
infer_config=infer_config,
adjust_config=adjust_config,
enhancer_config=enhancer_config,
)
audio_data, sr = handler.enqueue()
# NOTE: 这里必须要加,不然 gradio 没法解析成 mp3 格式
audio_data = audio.audio_to_int16(audio_data)
return sr, audio_data
# @torch.inference_mode()
@spaces.GPU(duration=120)
def tts_generate(
text,
temperature=0.3,
top_p=0.7,
top_k=20,
spk=-1,
infer_seed=-1,
use_decoder=True,
prompt1="",
prompt2="",
prefix="",
style="",
disable_normalize=False,
batch_size=4,
enable_enhance=False,
enable_denoise=False,
spk_file=None,
spliter_thr: int = 100,
eos: str = "[uv_break]",
pitch: float = 0,
speed_rate: float = 1,
volume_gain_db: float = 0,
normalize: bool = True,
headroom: float = 1,
progress=gr.Progress(track_tqdm=True),
):
try:
batch_size = int(batch_size)
except Exception:
batch_size = 4
max_len = webui_config.tts_max
text = text.strip()[0:max_len]
if text == "":
raise gr.Error("Text is empty, please input some text")
if style == "*auto":
style = ""
if isinstance(top_k, float):
top_k = int(top_k)
params = calc_spk_style(spk=spk, style=style)
spk = params.get("spk", spk)
infer_seed = infer_seed or params.get("seed", infer_seed)
temperature = temperature or params.get("temperature", temperature)
prefix = prefix or params.get("prefix", prefix)
prompt1 = prompt1 or params.get("prompt1", "")
prompt2 = prompt2 or params.get("prompt2", "")
infer_seed = np.clip(infer_seed, -1, 2**32 - 1, out=None, dtype=np.float64)
infer_seed = int(infer_seed)
if isinstance(spk, int):
spk = Speaker.from_seed(spk)
if spk_file:
try:
spk: Speaker = Speaker.from_file(spk_file)
except Exception:
raise gr.Error("Failed to load speaker file")
if not isinstance(spk.emb, torch.Tensor):
raise gr.Error("Speaker file is not supported")
tts_config = ChatTTSConfig(
style=style,
temperature=temperature,
top_k=top_k,
top_p=top_p,
prefix=prefix,
prompt1=prompt1,
prompt2=prompt2,
)
infer_config = InferConfig(
batch_size=batch_size,
spliter_threshold=spliter_thr,
eos=eos,
seed=infer_seed,
)
adjust_config = AdjustConfig(
pitch=pitch,
speed_rate=speed_rate,
volume_gain_db=volume_gain_db,
normalize=normalize,
headroom=headroom,
)
enhancer_config = EnhancerConfig(
enabled=enable_denoise or enable_enhance or False,
lambd=0.9 if enable_denoise else 0.1,
)
handler = TTSHandler(
text_content=text,
spk=spk,
tts_config=tts_config,
infer_config=infer_config,
adjust_config=adjust_config,
enhancer_config=enhancer_config,
)
audio_data, sample_rate = handler.enqueue()
# NOTE: 这里必须要加,不然 gradio 没法解析成 mp3 格式
audio_data = audio.audio_to_int16(audio_data)
return sample_rate, audio_data
@torch.inference_mode()
@spaces.GPU(duration=120)
def refine_text(
text: str,
prompt: str,
progress=gr.Progress(track_tqdm=True),
):
text = text_normalize(text)
return refiner.refine_text(text, prompt=prompt)
@torch.inference_mode()
@spaces.GPU(duration=120)
def split_long_text(long_text_input, spliter_threshold=100, eos=""):
spliter = SentenceSplitter(threshold=spliter_threshold)
sentences = spliter.parse(long_text_input)
sentences = [text_normalize(s) + eos for s in sentences]
data = []
for i, text in enumerate(sentences):
token_length = spliter.count_tokens(text)
data.append([i, text, token_length])
return data