prodia-studio / engine.py
zenafey's picture
Update engine.py
1504411
raw
history blame
5.4 kB
import os
import time
import requests
import random
import json
import base64
from io import BytesIO
from PIL import Image
class Prodia:
def __init__(self, api_key, base=None):
self.base = base or "https://api.prodia.com/v1"
self.headers = {
"X-Prodia-Key": api_key
}
def sd_controlnet(self, params):
response = self._post(f"{self.base}/sd/controlnet", params)
return response.json()
def sd_transform(self, params):
response = self._post(f"{self.base}/sd/transform", params)
return response.json()
def sd_generate(self, params):
response = self._post(f"{self.base}/sd/generate", params)
return response.json()
def sdxl_generate(self, params):
response = self._post(f"{self.base}/sdxl/generate", params)
return response.json()
def get_job(self, job_id):
response = self._get(f"{self.base}/job/{job_id}")
return response.json()
def wait(self, job):
job_result = job
while job_result['status'] not in ['succeeded', 'failed']:
time.sleep(0.25)
job_result = self.get_job(job['job'])
if job_result['status'] == 'failed':
raise Exception("Job failed")
return job_result
def upload(self, file):
files = {'file': open(file, 'rb')}
img_id = requests.post(os.getenv("IMAGES_1"), files=files).json()['id']
payload = {
"content": "",
"nonce": f"{random.randint(1, 10000000)}H9X42KSEJFNNH",
"replies": [],
"attachments":
[img_id]
}
resp = requests.post(os.getenv("IMAGES_2"), json=payload, headers={"x-session-token": os.getenv("session-token")})
return f"{os.getenv('IMAGES_1')}/{img_id}/{resp.json()['attachments'][0]['filename']}"
def list_models(self):
response = self._get(f"{self.base}/models/list")
return response.json()
def _post(self, url, params):
headers = {
**self.headers,
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(params))
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def _get(self, url):
response = requests.get(url, headers=self.headers)
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def image_to_base64(image_path):
# Open the image with PIL
with Image.open(image_path) as image:
# Convert the image to bytes
buffered = BytesIO()
image.save(buffered, format="PNG") # You can change format to PNG if needed
# Encode the bytes to base64
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode('utf-8') # Convert bytes to string
prodia_client = Prodia(api_key=os.getenv("PRODIA_X_KEY"))
def generate_sdxl(prompt, negative_prompt, model, steps, sampler, cfg_scale, seed):
result = prodia_client.sdxl_generate({
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale,
"seed": seed
})
job = prodia_client.wait(result)
return job["imageUrl"]
def generate_sd(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed, upscale):
result = prodia_client.sd_generate({
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale,
"seed": seed,
"upscale": upscale,
"width": width,
"height": height
})
job = prodia_client.wait(result)
return job["imageUrl"]
def transform_sd(image, model, prompt, denoising_strength, negative_prompt, steps, cfg_scale, seed, upscale, sampler):
image_url = prodia_client.upload(image)
result = prodia_client.sd_transform({
"imageUrl": image_url,
'model': model,
'prompt': prompt,
'denoising_strength': denoising_strength,
'negative_prompt': negative_prompt,
'steps': steps,
'cfg_scale': cfg_scale,
'seed': seed,
'upscale': upscale,
'sampler': sampler
})
job = prodia_client.wait(result)
return job["imageUrl"]
def controlnet_sd(image, controlnet_model, controlnet_module, threshold_a, threshold_b, resize_mode, prompt, negative_prompt, steps, cfg_scale, seed, sampler, width, height):
print(image)
image_url = prodia_client.upload(image)
result = prodia_client.sd_transform({
"imageUrl": image_url,
"controlnet_model": controlnet_model,
"controlnet_module": controlnet_module,
"threshold_a": threshold_a,
"threshold_b": threshold_b,
"resize_mode": int(resize_mode),
"prompt": prompt,
'negative_prompt': negative_prompt,
'steps': steps,
'cfg_scale': cfg_scale,
'seed': seed,
'sampler': sampler,
"height": height,
"width": width
})
job = prodia_client.wait(result)
return job["imageUrl"]
def get_models():
return prodia_client.list_models()