File size: 7,154 Bytes
500f573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
from fetch import get_values
from dotenv import load_dotenv
load_dotenv()
import prodia
import requests
import random
from datetime import datetime
import os

prodia_key = os.getenv('PRODIA_X_KEY', None)
if prodia_key is None:
    print("Please set PRODIA_X_KEY in .env, closing...")
    exit()
client = prodia.Client(api_key=prodia_key)

def process_input_text2img(prompt, negative_prompt, steps, cfg_scale, number, seed, model, sampler, aspect_ratio, upscale, save):
    images = []
    for image in range(number):
        result = client.txt2img(prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler,
                                steps=steps, cfg_scale=cfg_scale, seed=seed, aspect_ratio=aspect_ratio, upscale=upscale)
        images.append(result.url)
        if save:
            date = datetime.now()
            if not os.path.isdir(f'./outputs/{date.year}-{date.month}-{date.day}'):
                os.mkdir(f'./outputs/{date.year}-{date.month}-{date.day}')
            img_data = requests.get(result.url).content
            with open(f"./outputs/{date.year}-{date.month}-{date.day}/{random.randint(1, 10000000000000)}_{result.seed}.png", "wb") as f:
                f.write(img_data)
    return images

def process_input_img2img(init, prompt, negative_prompt, steps, cfg_scale, number, seed, model, sampler, ds, upscale, save):
    images = []
    for image in range(number):
        result = client.img2img(imageUrl=init, prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler,
                                steps=steps, cfg_scale=cfg_scale, seed=seed, denoising_strength=ds, upscale=upscale)
        images.append(result.url)
        if save:
            date = datetime.now()
            if not os.path.isdir(f'./outputs/{date.year}-{date.month}-{date.day}'):
                os.mkdir(f'./outputs/{date.year}-{date.month}-{date.day}')
            img_data = requests.get(result.url).content
            with open(f"./outputs/{date.year}-{date.month}-{date.day}/{random.randint(1, 10000000000000)}_{result.seed}.png", "wb") as f:
                f.write(img_data)
    return images

"""
def process_input_control(init, prompt, negative_prompt, steps, cfg_scale, number, seed, model, control_model, sampler):
    images = []
    for image in range(number):
        result = client.controlnet(imageUrl=init, prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler,
                                steps=steps, cfg_scale=cfg_scale, seed=seed, controlnet_model=control_model)
        images.append(result.url)
    return images
"""

with gr.Blocks() as demo:
    gr.Markdown("""
    # Prodia API web-ui by @zenafey
    
    This is simple web-gui for using Prodia API easily, build on Python, gradio, prodiapy
    """)
    with gr.Tab(label="text2img"):
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", lines=2)
                negative = gr.Textbox(label="Negative Prompt", lines=3, placeholder="badly drawn")

                with gr.Row():
                    steps = gr.Slider(label="Steps", value=30, step=1, maximum=50, minimum=1, interactive=True)
                    cfg = gr.Slider(label="CFG Scale", maximum=20, minimum=1, value=7, interactive=True)

                with gr.Row():
                    num = gr.Slider(label="Number of images", value=1, step=1, minimum=1, interactive=True)
                    seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967295, interactive=True)

                with gr.Row():
                    model = gr.Dropdown(label="Model", choices=get_values()[0], value="v1-5-pruned-emaonly.ckpt [81761151]", interactive=True)
                    sampler = gr.Dropdown(label="Sampler", choices=get_values()[1], value="DDIM", interactive=True)

                with gr.Row():
                    ar = gr.Radio(label="Aspect Ratio", choices=["square", "portrait", "landscape"], value="square", interactive=True)
                    with gr.Column():
                        upscale = gr.Checkbox(label="upscale", interactive=True)
                        save = gr.Checkbox(label="auto save", interactive=True)

                with gr.Row():
                    run_btn = gr.Button("Run", variant="primary")
            with gr.Column():
                result_image = gr.Gallery(label="Result Image(s)")
        run_btn.click(
            process_input_text2img,
            inputs=[
                prompt,
                negative,
                steps,
                cfg,
                num,
                seed,
                model,
                sampler,
                ar,
                upscale,
                save
            ],
            outputs=[result_image],
        )

    with gr.Tab(label="img2img"):
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", lines=2)

                with gr.Row():
                    negative = gr.Textbox(label="Negative Prompt", lines=3, placeholder="badly drawn")
                    init_image = gr.Textbox(label="Init Image Url", lines=2, placeholder="https://cdn.openai.com/API/images/guides/image_generation_simple.webp")


                with gr.Row():
                    steps = gr.Slider(label="Steps", value=30, step=1, maximum=50, minimum=1, interactive=True)
                    cfg = gr.Slider(label="CFG Scale", maximum=20, minimum=1, value=7, interactive=True)

                with gr.Row():
                    num = gr.Slider(label="Number of images", value=1, step=1, minimum=1, interactive=True)
                    seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967295, interactive=True)

                with gr.Row():
                    model = gr.Dropdown(label="Model", choices=get_values()[0], value="v1-5-pruned-emaonly.ckpt [81761151]", interactive=True)
                    sampler = gr.Dropdown(label="Sampler", choices=get_values()[1], value="DDIM", interactive=True)

                with gr.Row():
                    ds = gr.Slider(label="Denoising strength", maximum=0.9, minimum=0.1, value=0.5, interactive=True)
                    with gr.Column():
                        upscale = gr.Checkbox(label="upscale", interactive=True)
                        save = gr.Checkbox(label="auto save", interactive=True)

                with gr.Row():
                    run_btn = gr.Button("Run", variant="primary")
            with gr.Column():
                result_image = gr.Gallery(label="Result Image(s)")
        run_btn.click(
            process_input_img2img,
            inputs=[
                init_image,
                prompt,
                negative,
                steps,
                cfg,
                num,
                seed,
                model,
                sampler,
                ds,
                upscale,
                save
            ],
            outputs=[result_image],
        )

    with gr.Tab(label="controlnet(coming soon)"):
        gr.Button(label="lol")


if __name__ == "__main__":
    demo.launch(show_api=True)