samidh commited on
Commit
8af129a
·
verified ·
1 Parent(s): 4f51cd9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -1
app.py CHANGED
@@ -12,7 +12,7 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
12
  base_model_name = "google/gemma-7b"
13
  adapter_model_name = "samidh/cope-g7bq-2c-hs.s1.5fpc.9-sx.s1.5.9o-VL.s1.5.9-HR.s5-SH.s5-l5e5-e3-d25-r8"
14
 
15
- model = AutoModelForCausalLM.from_pretrained(base_model_name, token=os.environ['HF_TOKEN'])
16
  model = PeftModel.from_pretrained(model, adapter_model_name, token=os.environ['HF_TOKEN'])
17
  model.merge_and_unload()
18
 
@@ -86,6 +86,7 @@ def predict(content, policy):
86
  with torch.no_grad():
87
  outputs = model(input_ids)
88
  logits = outputs.logits[:, -1, :] # Get logits for the last token
 
89
  predicted_token_id = torch.argmax(logits, dim=-1).item()
90
  decoded_output = tokenizer.decode([predicted_token_id])
91
  if decoded_output == '0':
 
12
  base_model_name = "google/gemma-7b"
13
  adapter_model_name = "samidh/cope-g7bq-2c-hs.s1.5fpc.9-sx.s1.5.9o-VL.s1.5.9-HR.s5-SH.s5-l5e5-e3-d25-r8"
14
 
15
+ model = AutoModelForCausalLM.from_pretrained(base_model_name, token=os.environ['HF_TOKEN'], device_map="auto")
16
  model = PeftModel.from_pretrained(model, adapter_model_name, token=os.environ['HF_TOKEN'])
17
  model.merge_and_unload()
18
 
 
86
  with torch.no_grad():
87
  outputs = model(input_ids)
88
  logits = outputs.logits[:, -1, :] # Get logits for the last token
89
+ model.gradient_checkpointing_enable()
90
  predicted_token_id = torch.argmax(logits, dim=-1).item()
91
  decoded_output = tokenizer.decode([predicted_token_id])
92
  if decoded_output == '0':