Spaces:
Runtime error
Runtime error
refactor
Browse files- app.py +109 -146
- models/controlnet.py +51 -0
- models/embeds.py +5 -0
- utils/model_utils.py +5 -1
- utils/string_utils.py +45 -0
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import spaces
|
2 |
import os
|
3 |
from stablepy import Model_Diffusers
|
4 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
@@ -31,63 +31,13 @@ from models.checkpoints import CHECKPOINT_LIST as download_model
|
|
31 |
from models.loras import LORA_LIST as download_lora
|
32 |
from models.format_models import FORMAT_MODELS as load_diffusers_format_model
|
33 |
from models.upscaler import upscaler_dict_gui
|
|
|
|
|
34 |
from examples.examples import example_prompts
|
35 |
from utils.download_utils import download_things
|
36 |
from utils.model_utils import get_model_list
|
37 |
|
38 |
-
|
39 |
-
"openpose": [
|
40 |
-
"Openpose",
|
41 |
-
"None",
|
42 |
-
],
|
43 |
-
"scribble": [
|
44 |
-
"HED",
|
45 |
-
"Pidinet",
|
46 |
-
"None",
|
47 |
-
],
|
48 |
-
"softedge": [
|
49 |
-
"Pidinet",
|
50 |
-
"HED",
|
51 |
-
"HED safe",
|
52 |
-
"Pidinet safe",
|
53 |
-
"None",
|
54 |
-
],
|
55 |
-
"segmentation": [
|
56 |
-
"UPerNet",
|
57 |
-
"None",
|
58 |
-
],
|
59 |
-
"depth": [
|
60 |
-
"DPT",
|
61 |
-
"Midas",
|
62 |
-
"None",
|
63 |
-
],
|
64 |
-
"normalbae": [
|
65 |
-
"NormalBae",
|
66 |
-
"None",
|
67 |
-
],
|
68 |
-
"lineart": [
|
69 |
-
"Lineart",
|
70 |
-
"Lineart coarse",
|
71 |
-
"Lineart (anime)",
|
72 |
-
"None",
|
73 |
-
"None (anime)",
|
74 |
-
],
|
75 |
-
"shuffle": [
|
76 |
-
"ContentShuffle",
|
77 |
-
"None",
|
78 |
-
],
|
79 |
-
"canny": [
|
80 |
-
"Canny"
|
81 |
-
],
|
82 |
-
"mlsd": [
|
83 |
-
"MLSD"
|
84 |
-
],
|
85 |
-
"ip2p": [
|
86 |
-
"ip2p"
|
87 |
-
]
|
88 |
-
}
|
89 |
-
|
90 |
-
task_stablepy = {
|
91 |
'txt2img': 'txt2img',
|
92 |
'img2img': 'img2img',
|
93 |
'inpaint': 'inpaint',
|
@@ -111,20 +61,34 @@ task_stablepy = {
|
|
111 |
'optical pattern ControlNet': 'pattern',
|
112 |
'tile realistic': 'sdxl_tile_realistic',
|
113 |
}
|
114 |
-
|
115 |
-
task_model_list = list(task_stablepy.keys())
|
116 |
-
|
117 |
-
directory_models = 'models'
|
118 |
-
os.makedirs(directory_models, exist_ok=True)
|
119 |
-
directory_loras = 'loras'
|
120 |
-
os.makedirs(directory_loras, exist_ok=True)
|
121 |
-
directory_vaes = 'vaes'
|
122 |
-
os.makedirs(directory_vaes, exist_ok=True)
|
123 |
-
|
124 |
# LOAD ALL ENV TOKEN
|
125 |
CIVITAI_API_KEY: str = os.environ.get("CIVITAI_API_KEY")
|
126 |
hf_token: str = os.environ.get("HF_TOKEN")
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
# Download stuffs
|
129 |
for url in [url.strip() for url in download_model.split(',')]:
|
130 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
@@ -153,18 +117,6 @@ for url in [url.strip() for url in download_lora.split(',')]:
|
|
153 |
CIVITAI_API_KEY
|
154 |
)
|
155 |
|
156 |
-
# Download Embeddings
|
157 |
-
directory_embeds = 'embedings'
|
158 |
-
os.makedirs(
|
159 |
-
directory_embeds,
|
160 |
-
exist_ok=True
|
161 |
-
)
|
162 |
-
download_embeds = [
|
163 |
-
'https://huggingface.co/datasets/Nerfgun3/bad_prompt/blob/main/bad_prompt_version2.pt',
|
164 |
-
'https://huggingface.co/embed/negative/resolve/main/EasyNegativeV2.safetensors',
|
165 |
-
'https://huggingface.co/embed/negative/resolve/main/bad-hands-5.pt',
|
166 |
-
]
|
167 |
-
|
168 |
for url_embed in download_embeds:
|
169 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
170 |
download_things(
|
@@ -185,11 +137,11 @@ vae_model_list.insert(0, "None")
|
|
185 |
|
186 |
|
187 |
def get_my_lora(link_url):
|
188 |
-
for
|
189 |
-
if not os.path.exists(f"./loras/{
|
190 |
download_things(
|
191 |
directory_loras,
|
192 |
-
|
193 |
hf_token,
|
194 |
CIVITAI_API_KEY
|
195 |
)
|
@@ -212,47 +164,6 @@ def get_my_lora(link_url):
|
|
212 |
|
213 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
214 |
|
215 |
-
|
216 |
-
def extract_parameters(input_string):
|
217 |
-
parameters = {}
|
218 |
-
input_string = input_string.replace("\n", "")
|
219 |
-
|
220 |
-
if not "Negative prompt:" in input_string:
|
221 |
-
print("Negative prompt not detected")
|
222 |
-
parameters["prompt"] = input_string
|
223 |
-
return parameters
|
224 |
-
|
225 |
-
parm = input_string.split("Negative prompt:")
|
226 |
-
parameters["prompt"] = parm[0]
|
227 |
-
if not "Steps:" in parm[1]:
|
228 |
-
print("Steps not detected")
|
229 |
-
parameters["neg_prompt"] = parm[1]
|
230 |
-
return parameters
|
231 |
-
parm = parm[1].split("Steps:")
|
232 |
-
parameters["neg_prompt"] = parm[0]
|
233 |
-
input_string = "Steps:" + parm[1]
|
234 |
-
|
235 |
-
# Extracting Steps
|
236 |
-
steps_match = re.search(r'Steps: (\d+)', input_string)
|
237 |
-
if steps_match:
|
238 |
-
parameters['Steps'] = int(steps_match.group(1))
|
239 |
-
|
240 |
-
# Extracting Size
|
241 |
-
size_match = re.search(r'Size: (\d+x\d+)', input_string)
|
242 |
-
if size_match:
|
243 |
-
parameters['Size'] = size_match.group(1)
|
244 |
-
width, height = map(int, parameters['Size'].split('x'))
|
245 |
-
parameters['width'] = width
|
246 |
-
parameters['height'] = height
|
247 |
-
|
248 |
-
# Extracting other parameters
|
249 |
-
other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string)
|
250 |
-
for param in other_parameters:
|
251 |
-
parameters[param[0]] = param[1].strip('"')
|
252 |
-
|
253 |
-
return parameters
|
254 |
-
|
255 |
-
|
256 |
#######################
|
257 |
# GUI
|
258 |
#######################
|
@@ -263,6 +174,8 @@ import IPython.display
|
|
263 |
import time, json
|
264 |
from IPython.utils import capture
|
265 |
import logging
|
|
|
|
|
266 |
|
267 |
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
268 |
import diffusers
|
@@ -285,7 +198,6 @@ warnings.filterwarnings(
|
|
285 |
category=FutureWarning,
|
286 |
module="transformers"
|
287 |
)
|
288 |
-
from stablepy import logger
|
289 |
|
290 |
logger.setLevel(logging.DEBUG)
|
291 |
|
@@ -448,7 +360,7 @@ class GuiSD:
|
|
448 |
vae_model = vae_model if vae_model != "None" else None
|
449 |
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
450 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
451 |
-
msg_lora = []
|
452 |
|
453 |
if model_name in model_list:
|
454 |
model_is_xl = "xl" in model_name.lower()
|
@@ -471,13 +383,15 @@ class GuiSD:
|
|
471 |
vae_model = None
|
472 |
|
473 |
for la in loras_list:
|
474 |
-
if la is
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
|
|
|
|
481 |
|
482 |
task = task_stablepy[task]
|
483 |
|
@@ -718,6 +632,7 @@ def update_task_options(model_name, task_name):
|
|
718 |
)
|
719 |
|
720 |
|
|
|
721 |
with gr.Blocks(css=CSS) as app:
|
722 |
gr.Markdown("# 🧩 (Ivan) DiffuseCraft")
|
723 |
with gr.Tab("Generation"):
|
@@ -846,7 +761,7 @@ with gr.Blocks(css=CSS) as app:
|
|
846 |
}
|
847 |
valid_keys = list(valid_receptors.keys())
|
848 |
|
849 |
-
parameters = extract_parameters(base_prompt)
|
850 |
for key, val in parameters.items():
|
851 |
# print(val)
|
852 |
if key in valid_keys:
|
@@ -930,7 +845,7 @@ with gr.Blocks(css=CSS) as app:
|
|
930 |
vae_model_gui = gr.Dropdown(
|
931 |
label="VAE Model",
|
932 |
choices=vae_model_list,
|
933 |
-
value=vae_model_list[
|
934 |
)
|
935 |
|
936 |
with gr.Accordion("Hires fix", open=False, visible=True):
|
@@ -1061,11 +976,16 @@ with gr.Blocks(css=CSS) as app:
|
|
1061 |
button_lora.click(
|
1062 |
get_my_lora,
|
1063 |
[text_lora],
|
1064 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
1065 |
)
|
1066 |
|
1067 |
-
with gr.Accordion("IP-Adapter", open=False, visible=True):
|
1068 |
-
|
1069 |
IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL)))
|
1070 |
MODE_IP_OPTIONS = [
|
1071 |
"original",
|
@@ -1075,17 +995,58 @@ with gr.Blocks(css=CSS) as app:
|
|
1075 |
]
|
1076 |
|
1077 |
with gr.Accordion("IP-Adapter 1", open=False, visible=True):
|
1078 |
-
image_ip1 = gr.Image(
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1083 |
with gr.Accordion("IP-Adapter 2", open=False, visible=True):
|
1084 |
-
image_ip2 = gr.Image(
|
1085 |
-
|
1086 |
-
|
1087 |
-
|
1088 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1089 |
|
1090 |
with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True):
|
1091 |
image_control = gr.Image(
|
@@ -1122,7 +1083,10 @@ with gr.Blocks(css=CSS) as app:
|
|
1122 |
choices_task = preprocessor_controlnet[task]
|
1123 |
else:
|
1124 |
choices_task = preprocessor_controlnet["canny"]
|
1125 |
-
return gr.update(
|
|
|
|
|
|
|
1126 |
|
1127 |
|
1128 |
task_gui.change(
|
@@ -1689,7 +1653,6 @@ with gr.Blocks(css=CSS) as app:
|
|
1689 |
)
|
1690 |
|
1691 |
app.queue()
|
1692 |
-
|
1693 |
app.launch(
|
1694 |
show_error=True,
|
1695 |
debug=True,
|
|
|
1 |
+
import spaces # must imported when using spaces
|
2 |
import os
|
3 |
from stablepy import Model_Diffusers
|
4 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
|
|
31 |
from models.loras import LORA_LIST as download_lora
|
32 |
from models.format_models import FORMAT_MODELS as load_diffusers_format_model
|
33 |
from models.upscaler import upscaler_dict_gui
|
34 |
+
from models.controlnet import preprocessor_controlnet
|
35 |
+
from models.embeds import download_embeds
|
36 |
from examples.examples import example_prompts
|
37 |
from utils.download_utils import download_things
|
38 |
from utils.model_utils import get_model_list
|
39 |
|
40 |
+
task_stablepy: dict = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
'txt2img': 'txt2img',
|
42 |
'img2img': 'img2img',
|
43 |
'inpaint': 'inpaint',
|
|
|
61 |
'optical pattern ControlNet': 'pattern',
|
62 |
'tile realistic': 'sdxl_tile_realistic',
|
63 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
# LOAD ALL ENV TOKEN
|
65 |
CIVITAI_API_KEY: str = os.environ.get("CIVITAI_API_KEY")
|
66 |
hf_token: str = os.environ.get("HF_TOKEN")
|
67 |
|
68 |
+
|
69 |
+
task_model_list = list(task_stablepy.keys())
|
70 |
+
|
71 |
+
directory_models: str = 'models'
|
72 |
+
os.makedirs(
|
73 |
+
directory_models,
|
74 |
+
exist_ok=True
|
75 |
+
)
|
76 |
+
directory_loras: str = 'loras'
|
77 |
+
os.makedirs(
|
78 |
+
directory_loras,
|
79 |
+
exist_ok=True
|
80 |
+
)
|
81 |
+
directory_vaes: str = 'vaes'
|
82 |
+
os.makedirs(
|
83 |
+
directory_vaes,
|
84 |
+
exist_ok=True
|
85 |
+
)
|
86 |
+
directory_embeds: str = 'embedings'
|
87 |
+
os.makedirs(
|
88 |
+
directory_embeds,
|
89 |
+
exist_ok=True
|
90 |
+
)
|
91 |
+
|
92 |
# Download stuffs
|
93 |
for url in [url.strip() for url in download_model.split(',')]:
|
94 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
|
|
117 |
CIVITAI_API_KEY
|
118 |
)
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
for url_embed in download_embeds:
|
121 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
122 |
download_things(
|
|
|
137 |
|
138 |
|
139 |
def get_my_lora(link_url):
|
140 |
+
for __url in [_url.strip() for _url in link_url.split(',')]:
|
141 |
+
if not os.path.exists(f"./loras/{__url.split('/')[-1]}"):
|
142 |
download_things(
|
143 |
directory_loras,
|
144 |
+
__url,
|
145 |
hf_token,
|
146 |
CIVITAI_API_KEY
|
147 |
)
|
|
|
164 |
|
165 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
#######################
|
168 |
# GUI
|
169 |
#######################
|
|
|
174 |
import time, json
|
175 |
from IPython.utils import capture
|
176 |
import logging
|
177 |
+
from utils.string_utils import extract_parameters
|
178 |
+
from stablepy import logger
|
179 |
|
180 |
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
181 |
import diffusers
|
|
|
198 |
category=FutureWarning,
|
199 |
module="transformers"
|
200 |
)
|
|
|
201 |
|
202 |
logger.setLevel(logging.DEBUG)
|
203 |
|
|
|
360 |
vae_model = vae_model if vae_model != "None" else None
|
361 |
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
362 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
363 |
+
msg_lora: list = []
|
364 |
|
365 |
if model_name in model_list:
|
366 |
model_is_xl = "xl" in model_name.lower()
|
|
|
383 |
vae_model = None
|
384 |
|
385 |
for la in loras_list:
|
386 |
+
if la is None or la == "None" or la not in lora_model_list:
|
387 |
+
continue
|
388 |
+
|
389 |
+
print(la)
|
390 |
+
lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
|
391 |
+
if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
|
392 |
+
msg_inc_lora = f"The LoRA {la} is for {'SD 1.5' if model_is_xl else 'SDXL'}, but you are using {model_type}."
|
393 |
+
gr.Info(msg_inc_lora)
|
394 |
+
msg_lora.append(msg_inc_lora)
|
395 |
|
396 |
task = task_stablepy[task]
|
397 |
|
|
|
632 |
)
|
633 |
|
634 |
|
635 |
+
# APP
|
636 |
with gr.Blocks(css=CSS) as app:
|
637 |
gr.Markdown("# 🧩 (Ivan) DiffuseCraft")
|
638 |
with gr.Tab("Generation"):
|
|
|
761 |
}
|
762 |
valid_keys = list(valid_receptors.keys())
|
763 |
|
764 |
+
parameters: dict = extract_parameters(base_prompt)
|
765 |
for key, val in parameters.items():
|
766 |
# print(val)
|
767 |
if key in valid_keys:
|
|
|
845 |
vae_model_gui = gr.Dropdown(
|
846 |
label="VAE Model",
|
847 |
choices=vae_model_list,
|
848 |
+
value=vae_model_list[1]
|
849 |
)
|
850 |
|
851 |
with gr.Accordion("Hires fix", open=False, visible=True):
|
|
|
976 |
button_lora.click(
|
977 |
get_my_lora,
|
978 |
[text_lora],
|
979 |
+
[
|
980 |
+
lora1_gui,
|
981 |
+
lora2_gui,
|
982 |
+
lora3_gui,
|
983 |
+
lora4_gui,
|
984 |
+
lora5_gui
|
985 |
+
]
|
986 |
)
|
987 |
|
988 |
+
with gr.Accordion("IP-Adapter", open=False, visible=True): # IP-Adapter
|
|
|
989 |
IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL)))
|
990 |
MODE_IP_OPTIONS = [
|
991 |
"original",
|
|
|
995 |
]
|
996 |
|
997 |
with gr.Accordion("IP-Adapter 1", open=False, visible=True):
|
998 |
+
image_ip1 = gr.Image(
|
999 |
+
label="IP Image",
|
1000 |
+
type="filepath"
|
1001 |
+
)
|
1002 |
+
mask_ip1 = gr.Image(
|
1003 |
+
label="IP Mask",
|
1004 |
+
type="filepath"
|
1005 |
+
)
|
1006 |
+
model_ip1 = gr.Dropdown(
|
1007 |
+
value="plus_face",
|
1008 |
+
label="Model",
|
1009 |
+
choices=IP_MODELS
|
1010 |
+
)
|
1011 |
+
mode_ip1 = gr.Dropdown(
|
1012 |
+
value="original",
|
1013 |
+
label="Mode",
|
1014 |
+
choices=MODE_IP_OPTIONS
|
1015 |
+
)
|
1016 |
+
scale_ip1 = gr.Slider(
|
1017 |
+
minimum=0.,
|
1018 |
+
maximum=2.,
|
1019 |
+
step=0.01,
|
1020 |
+
value=0.7,
|
1021 |
+
label="Scale"
|
1022 |
+
)
|
1023 |
+
|
1024 |
with gr.Accordion("IP-Adapter 2", open=False, visible=True):
|
1025 |
+
image_ip2 = gr.Image(
|
1026 |
+
label="IP Image",
|
1027 |
+
type="filepath"
|
1028 |
+
)
|
1029 |
+
mask_ip2 = gr.Image(
|
1030 |
+
label="IP Mask (optional)",
|
1031 |
+
type="filepath"
|
1032 |
+
)
|
1033 |
+
model_ip2 = gr.Dropdown(
|
1034 |
+
value="base",
|
1035 |
+
label="Model",
|
1036 |
+
choices=IP_MODELS
|
1037 |
+
)
|
1038 |
+
mode_ip2 = gr.Dropdown(
|
1039 |
+
value="style",
|
1040 |
+
label="Mode",
|
1041 |
+
choices=MODE_IP_OPTIONS
|
1042 |
+
)
|
1043 |
+
scale_ip2 = gr.Slider(
|
1044 |
+
minimum=0.,
|
1045 |
+
maximum=2.,
|
1046 |
+
step=0.01,
|
1047 |
+
value=0.7,
|
1048 |
+
label="Scale"
|
1049 |
+
)
|
1050 |
|
1051 |
with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True):
|
1052 |
image_control = gr.Image(
|
|
|
1083 |
choices_task = preprocessor_controlnet[task]
|
1084 |
else:
|
1085 |
choices_task = preprocessor_controlnet["canny"]
|
1086 |
+
return gr.update(
|
1087 |
+
choices=choices_task,
|
1088 |
+
value=choices_task[0]
|
1089 |
+
)
|
1090 |
|
1091 |
|
1092 |
task_gui.change(
|
|
|
1653 |
)
|
1654 |
|
1655 |
app.queue()
|
|
|
1656 |
app.launch(
|
1657 |
show_error=True,
|
1658 |
debug=True,
|
models/controlnet.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
preprocessor_controlnet: dict = {
|
2 |
+
"openpose": [
|
3 |
+
"Openpose",
|
4 |
+
"None",
|
5 |
+
],
|
6 |
+
"scribble": [
|
7 |
+
"HED",
|
8 |
+
"Pidinet",
|
9 |
+
"None",
|
10 |
+
],
|
11 |
+
"softedge": [
|
12 |
+
"Pidinet",
|
13 |
+
"HED",
|
14 |
+
"HED safe",
|
15 |
+
"Pidinet safe",
|
16 |
+
"None",
|
17 |
+
],
|
18 |
+
"segmentation": [
|
19 |
+
"UPerNet",
|
20 |
+
"None",
|
21 |
+
],
|
22 |
+
"depth": [
|
23 |
+
"DPT",
|
24 |
+
"Midas",
|
25 |
+
"None",
|
26 |
+
],
|
27 |
+
"normalbae": [
|
28 |
+
"NormalBae",
|
29 |
+
"None",
|
30 |
+
],
|
31 |
+
"lineart": [
|
32 |
+
"Lineart",
|
33 |
+
"Lineart coarse",
|
34 |
+
"Lineart (anime)",
|
35 |
+
"None",
|
36 |
+
"None (anime)",
|
37 |
+
],
|
38 |
+
"shuffle": [
|
39 |
+
"ContentShuffle",
|
40 |
+
"None",
|
41 |
+
],
|
42 |
+
"canny": [
|
43 |
+
"Canny"
|
44 |
+
],
|
45 |
+
"mlsd": [
|
46 |
+
"MLSD"
|
47 |
+
],
|
48 |
+
"ip2p": [
|
49 |
+
"ip2p"
|
50 |
+
]
|
51 |
+
}
|
models/embeds.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
download_embeds: list = [
|
2 |
+
'https://huggingface.co/datasets/Nerfgun3/bad_prompt/blob/main/bad_prompt_version2.pt',
|
3 |
+
'https://huggingface.co/embed/negative/resolve/main/EasyNegativeV2.safetensors',
|
4 |
+
'https://huggingface.co/embed/negative/resolve/main/bad-hands-5.pt',
|
5 |
+
]
|
utils/model_utils.py
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
def get_model_list(directory_path):
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
model_list: list = []
|
4 |
valid_extensions = {
|
@@ -16,4 +20,4 @@ def get_model_list(directory_path):
|
|
16 |
# model_list.append((name_without_extension, file_path))
|
17 |
model_list.append(file_path)
|
18 |
print('\033[34mFILE: ' + file_path + '\033[0m')
|
19 |
-
return model_list
|
|
|
1 |
def get_model_list(directory_path):
|
2 |
+
"""
|
3 |
+
:param directory_path:
|
4 |
+
:return:
|
5 |
+
"""
|
6 |
import os
|
7 |
model_list: list = []
|
8 |
valid_extensions = {
|
|
|
20 |
# model_list.append((name_without_extension, file_path))
|
21 |
model_list.append(file_path)
|
22 |
print('\033[34mFILE: ' + file_path + '\033[0m')
|
23 |
+
return model_list
|
utils/string_utils.py
CHANGED
@@ -12,3 +12,48 @@ def process_string(input_string: str):
|
|
12 |
return result
|
13 |
else:
|
14 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
return result
|
13 |
else:
|
14 |
return None
|
15 |
+
|
16 |
+
|
17 |
+
def extract_parameters(input_string: str) -> dict:
|
18 |
+
"""
|
19 |
+
:param input_string:
|
20 |
+
:return:
|
21 |
+
"""
|
22 |
+
import re
|
23 |
+
parameters: dict = {}
|
24 |
+
input_string: str = input_string.replace("\n", "")
|
25 |
+
|
26 |
+
if not "Negative prompt:" in input_string:
|
27 |
+
print("Negative prompt not detected")
|
28 |
+
parameters["prompt"] = input_string
|
29 |
+
return parameters
|
30 |
+
|
31 |
+
parm: list = input_string.split("Negative prompt:")
|
32 |
+
parameters["prompt"] = parm[0]
|
33 |
+
if not "Steps:" in parm[1]:
|
34 |
+
print("Steps not detected")
|
35 |
+
parameters["neg_prompt"] = parm[1]
|
36 |
+
return parameters
|
37 |
+
parm = parm[1].split("Steps:")
|
38 |
+
parameters["neg_prompt"] = parm[0]
|
39 |
+
input_string = "Steps:" + parm[1]
|
40 |
+
|
41 |
+
# Extracting Steps
|
42 |
+
steps_match = re.search(r'Steps: (\d+)', input_string)
|
43 |
+
if steps_match:
|
44 |
+
parameters['Steps'] = int(steps_match.group(1))
|
45 |
+
|
46 |
+
# Extracting Size
|
47 |
+
size_match = re.search(r'Size: (\d+x\d+)', input_string)
|
48 |
+
if size_match:
|
49 |
+
parameters['Size'] = size_match.group(1)
|
50 |
+
width, height = map(int, parameters['Size'].split('x'))
|
51 |
+
parameters['width'] = width
|
52 |
+
parameters['height'] = height
|
53 |
+
|
54 |
+
# Extracting other parameters
|
55 |
+
other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string)
|
56 |
+
for param in other_parameters:
|
57 |
+
parameters[param[0]] = param[1].strip('"')
|
58 |
+
|
59 |
+
return parameters
|