Spaces:
Runtime error
Runtime error
File size: 3,974 Bytes
d754e91 87a0e23 d754e91 90c428d d754e91 90c428d 87a0e23 90c428d 49b832f d754e91 90c428d d754e91 90c428d 87a0e23 d754e91 90c428d d754e91 90c428d d754e91 90c428d 4b2400e 90c428d 4b2400e 49b832f 90c428d 966795b 90c428d 4b2400e 90c428d d754e91 90c428d d754e91 90c428d 87a0e23 90c428d d754e91 90c428d d754e91 87a0e23 d754e91 90c428d d754e91 90c428d d754e91 87a0e23 90c428d 7b14813 87a0e23 9279c83 87a0e23 90c428d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import sys
import gc
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import PeftModel
from .globals import Global
def get_device():
if torch.cuda.is_available():
return "cuda"
else:
return "cpu"
try:
if torch.backends.mps.is_available():
return "mps"
except: # noqa: E722
pass
def get_new_base_model(base_model_name):
if Global.ui_dev_mode:
return
device = get_device()
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model_name,
load_in_8bit=Global.load_8bit,
torch_dtype=torch.float16,
# device_map="auto",
device_map={'': 0}, # ? https://github.com/tloen/alpaca-lora/issues/21
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model_name,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model_name, device_map={"": device}, low_cpu_mem_usage=True
)
model.config.pad_token_id = get_tokenizer(base_model_name).pad_token_id = 0
model.config.bos_token_id = 1
model.config.eos_token_id = 2
return model
def get_tokenizer(base_model_name):
if Global.ui_dev_mode:
return
loaded_tokenizer = Global.loaded_tokenizers.get(base_model_name)
if loaded_tokenizer:
return loaded_tokenizer
tokenizer = LlamaTokenizer.from_pretrained(base_model_name)
Global.loaded_tokenizers.set(base_model_name, tokenizer)
return tokenizer
def get_model(
base_model_name,
peft_model_name = None):
if Global.ui_dev_mode:
return
if peft_model_name == "None":
peft_model_name = None
model_key = base_model_name
if peft_model_name:
model_key = f"{base_model_name}//{peft_model_name}"
loaded_model = Global.loaded_models.get(model_key)
if loaded_model:
return loaded_model
peft_model_name_or_path = peft_model_name
lora_models_directory_path = os.path.join(Global.data_dir, "lora_models")
possible_lora_model_path = os.path.join(lora_models_directory_path, peft_model_name)
if os.path.isdir(possible_lora_model_path):
peft_model_name_or_path = possible_lora_model_path
Global.loaded_models.prepare_to_set()
clear_cache()
model = get_new_base_model(base_model_name)
if peft_model_name:
device = get_device()
if device == "cuda":
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
torch_dtype=torch.float16,
device_map={'': 0}, # ? https://github.com/tloen/alpaca-lora/issues/21
)
elif device == "mps":
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = PeftModel.from_pretrained(
model,
peft_model_name_or_path,
device_map={"": device},
)
model.config.pad_token_id = get_tokenizer(base_model_name).pad_token_id = 0
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not Global.load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
Global.loaded_models.set(model_key, model)
clear_cache()
return model
def clear_cache():
gc.collect()
# if not shared.args.cpu: # will not be running on CPUs anyway
with torch.no_grad():
torch.cuda.empty_cache()
def unload_models():
Global.loaded_models.clear()
Global.loaded_tokenizers.clear()
clear_cache()
|