Spaces:
Runtime error
Runtime error
File size: 3,425 Bytes
d754e91 87a0e23 d754e91 87a0e23 d754e91 4b2400e d754e91 87a0e23 d754e91 4b2400e d754e91 4b2400e d754e91 4b2400e d754e91 87a0e23 d754e91 87a0e23 d754e91 87a0e23 d754e91 0e92a92 c15d0e4 d754e91 87a0e23 b9929ef 7b14813 87a0e23 9279c83 87a0e23 9279c83 87a0e23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
import sys
import gc
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from .globals import Global
def get_device():
if torch.cuda.is_available():
return "cuda"
else:
return "cpu"
try:
if torch.backends.mps.is_available():
return "mps"
except: # noqa: E722
pass
device = get_device()
def get_base_model():
load_base_model()
return Global.loaded_base_model
def get_model_with_lora(lora_weights: str = "tloen/alpaca-lora-7b"):
Global.model_has_been_used = True
if device == "cuda":
model = PeftModel.from_pretrained(
get_base_model(),
lora_weights,
torch_dtype=torch.float16,
device_map={'': 0}, # ? https://github.com/tloen/alpaca-lora/issues/21
)
elif device == "mps":
model = PeftModel.from_pretrained(
get_base_model(),
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = PeftModel.from_pretrained(
get_base_model(),
lora_weights,
device_map={"": device},
)
model.config.pad_token_id = get_tokenizer().pad_token_id = 0
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not Global.load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
return model
def get_tokenizer():
load_base_model()
return Global.loaded_tokenizer
def load_base_model():
if Global.ui_dev_mode:
return
if Global.loaded_tokenizer is None:
Global.loaded_tokenizer = LlamaTokenizer.from_pretrained(
Global.base_model
)
if Global.loaded_base_model is None:
if device == "cuda":
Global.loaded_base_model = LlamaForCausalLM.from_pretrained(
Global.base_model,
load_in_8bit=Global.load_8bit,
torch_dtype=torch.float16,
# device_map="auto",
device_map={'': 0}, # ? https://github.com/tloen/alpaca-lora/issues/21
)
elif device == "mps":
Global.loaded_base_model = LlamaForCausalLM.from_pretrained(
Global.base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
Global.loaded_base_model = LlamaForCausalLM.from_pretrained(
Global.base_model, device_map={"": device}, low_cpu_mem_usage=True
)
Global.loaded_base_model.config.pad_token_id = get_tokenizer().pad_token_id = 0
Global.loaded_base_model.config.bos_token_id = 1
Global.loaded_base_model.config.eos_token_id = 2
def clear_cache():
gc.collect()
# if not shared.args.cpu: # will not be running on CPUs anyway
with torch.no_grad():
torch.cuda.empty_cache()
def unload_models():
del Global.loaded_base_model
Global.loaded_base_model = None
del Global.loaded_tokenizer
Global.loaded_tokenizer = None
clear_cache()
Global.model_has_been_used = False
def unload_models_if_already_used():
if Global.model_has_been_used:
unload_models()
|