File size: 8,482 Bytes
87a0e23
 
 
 
fb9b56d
 
87a0e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9b56d
 
 
 
87a0e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9b56d
 
 
 
 
 
87a0e23
 
 
 
 
 
 
 
 
 
 
 
fb9b56d
87a0e23
 
e9c5abc
87a0e23
fb9b56d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import sys
from typing import Any, List

import json

import fire
import torch
import transformers
from datasets import Dataset, load_dataset


from peft import (
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
    prepare_model_for_int8_training,
    set_peft_model_state_dict,
)
from transformers import LlamaForCausalLM, LlamaTokenizer


def train(
    # model/data params
    base_model: Any,
    tokenizer: Any,
    output_dir: str,
    train_dataset_data: List[Any],
    # training hyperparams
    micro_batch_size: int = 4,
    gradient_accumulation_steps: int = 32,
    num_epochs: int = 3,
    learning_rate: float = 3e-4,
    cutoff_len: int = 256,
    val_set_size: int = 2000,
    # lora hyperparams
    lora_r: int = 8,
    lora_alpha: int = 16,
    lora_dropout: float = 0.05,
    lora_target_modules: List[str] = [
        "q_proj",
        "v_proj",
    ],
    # llm hyperparams
    train_on_inputs: bool = True,  # if False, masks out inputs in loss
    group_by_length: bool = False,  # faster, but produces an odd training loss curve
    # either training checkpoint or final adapter
    resume_from_checkpoint: str = None,
    # logging
    callbacks: List[Any] = []
):
    if os.path.exists(output_dir):
        if (not os.path.isdir(output_dir)) or os.path.exists(os.path.join(output_dir, 'adapter_config.json')):
            raise ValueError(f"The output directory already exists and is not empty. ({output_dir})")

    device_map = "auto"
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    ddp = world_size != 1
    if ddp:
        device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}

    model = base_model
    if isinstance(model, str):
        model = LlamaForCausalLM.from_pretrained(
            base_model,
            load_in_8bit=True,
            torch_dtype=torch.float16,
            device_map=device_map,
        )

    if isinstance(tokenizer, str):
        tokenizer = LlamaTokenizer.from_pretrained(tokenizer)

    tokenizer.pad_token_id = (
        0  # unk. we want this to be different from the eos token
    )
    tokenizer.padding_side = "left"  # Allow batched inference

    def tokenize(prompt, add_eos_token=True):
        # there's probably a way to do this with the tokenizer settings
        # but again, gotta move fast
        result = tokenizer(
            prompt,
            truncation=True,
            max_length=cutoff_len,
            padding=False,
            return_tensors=None,
        )
        if (
            result["input_ids"][-1] != tokenizer.eos_token_id
            and len(result["input_ids"]) < cutoff_len
            and add_eos_token
        ):
            result["input_ids"].append(tokenizer.eos_token_id)
            result["attention_mask"].append(1)

        result["labels"] = result["input_ids"].copy()

        return result

    def generate_and_tokenize_prompt(data_point):
        full_prompt = data_point["prompt"] + data_point["completion"]
        tokenized_full_prompt = tokenize(full_prompt)
        if not train_on_inputs:
            user_prompt = data_point["prompt"]
            tokenized_user_prompt = tokenize(user_prompt, add_eos_token=False)
            user_prompt_len = len(tokenized_user_prompt["input_ids"])

            tokenized_full_prompt["labels"] = [
                -100
            ] * user_prompt_len + tokenized_full_prompt["labels"][
                user_prompt_len:
            ]  # could be sped up, probably
        return tokenized_full_prompt

    # will fail anyway.
    try:
        model = prepare_model_for_int8_training(model)
    except Exception as e:
        print(
            f"Got error while running prepare_model_for_int8_training(model), maybe the model has already be prepared. Original error: {e}.")

    # model = prepare_model_for_int8_training(model)

    config = LoraConfig(
        r=lora_r,
        lora_alpha=lora_alpha,
        target_modules=lora_target_modules,
        lora_dropout=lora_dropout,
        bias="none",
        task_type="CAUSAL_LM",
    )
    model = get_peft_model(model, config)

    # If train_dataset_data is a list, convert it to datasets.Dataset
    if isinstance(train_dataset_data, list):
        train_dataset_data = Dataset.from_list(train_dataset_data)

    if resume_from_checkpoint:
        # Check the available weights and load them
        checkpoint_name = os.path.join(
            resume_from_checkpoint, "pytorch_model.bin"
        )  # Full checkpoint
        if not os.path.exists(checkpoint_name):
            checkpoint_name = os.path.join(
                resume_from_checkpoint, "adapter_model.bin"
            )  # only LoRA model - LoRA config above has to fit
            resume_from_checkpoint = (
                False  # So the trainer won't try loading its state
            )
        # The two files above have a different name depending on how they were saved, but are actually the same.
        if os.path.exists(checkpoint_name):
            print(f"Restarting from {checkpoint_name}")
            adapters_weights = torch.load(checkpoint_name)
            model = set_peft_model_state_dict(model, adapters_weights)
        else:
            print(f"Checkpoint {checkpoint_name} not found")

    # Be more transparent about the % of trainable params.
    model.print_trainable_parameters()

    if val_set_size > 0:
        train_val = train_dataset_data.train_test_split(
            test_size=val_set_size, shuffle=True, seed=42
        )
        train_data = (
            train_val["train"].shuffle().map(generate_and_tokenize_prompt)
        )
        val_data = (
            train_val["test"].shuffle().map(generate_and_tokenize_prompt)
        )
    else:
        train_data = train_dataset_data.shuffle().map(generate_and_tokenize_prompt)
        val_data = None

    if not ddp and torch.cuda.device_count() > 1:
        # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
        model.is_parallelizable = True
        model.model_parallel = True

    trainer = transformers.Trainer(
        model=model,
        train_dataset=train_data,
        eval_dataset=val_data,
        args=transformers.TrainingArguments(
            per_device_train_batch_size=micro_batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            warmup_steps=100,
            num_train_epochs=num_epochs,
            learning_rate=learning_rate,
            fp16=True,
            logging_steps=10,
            optim="adamw_torch",
            evaluation_strategy="steps" if val_set_size > 0 else "no",
            save_strategy="steps",
            eval_steps=200 if val_set_size > 0 else None,
            save_steps=200,
            output_dir=output_dir,
            save_total_limit=3,
            load_best_model_at_end=True if val_set_size > 0 else False,
            ddp_find_unused_parameters=False if ddp else None,
            group_by_length=group_by_length,
            # report_to="wandb" if use_wandb else None,
            # run_name=wandb_run_name if use_wandb else None,
        ),
        data_collator=transformers.DataCollatorForSeq2Seq(
            tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
        ),
        callbacks=callbacks,
    )

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    with open(os.path.join(output_dir, "trainer_args.json"), 'w') as trainer_args_json_file:
        json.dump(trainer.args.to_dict(), trainer_args_json_file, indent=2)

    model.config.use_cache = False

    old_state_dict = model.state_dict
    model.state_dict = (
        lambda self, *_, **__: get_peft_model_state_dict(
            self, old_state_dict()
        )
    ).__get__(model, type(model))

    if torch.__version__ >= "2" and sys.platform != "win32":
        model = torch.compile(model)

    train_output = trainer.train(resume_from_checkpoint=resume_from_checkpoint)

    model.save_pretrained(output_dir)
    print(f"Model saved to {output_dir}.")

    with open(os.path.join(output_dir, "trainer_log_history.jsonl"), 'w') as trainer_log_history_jsonl_file:
        trainer_log_history = "\n".join([json.dumps(line) for line in trainer.state.log_history])
        trainer_log_history_jsonl_file.write(trainer_log_history)

    with open(os.path.join(output_dir, "train_output.json"), 'w') as train_output_json_file:
        json.dump(train_output, train_output_json_file, indent=2)

    return train_output