zetavg commited on
Commit
fd15ecb
·
1 Parent(s): fbc105f

support switching base models

Browse files
LLaMA_LoRA.ipynb CHANGED
@@ -289,7 +289,8 @@
289
  "\n",
290
  "# Set Configs\n",
291
  "from llama_lora.llama_lora.globals import Global\n",
292
- "Global.default_base_model_name = base_model\n",
 
293
  "data_dir_realpath = !realpath ./data\n",
294
  "Global.data_dir = data_dir_realpath[0]\n",
295
  "Global.load_8bit = True\n",
 
289
  "\n",
290
  "# Set Configs\n",
291
  "from llama_lora.llama_lora.globals import Global\n",
292
+ "Global.default_base_model_name = Global.base_model_name = base_model\n",
293
+ "Global.base_model_choices = [base_model]\n",
294
  "data_dir_realpath = !realpath ./data\n",
295
  "Global.data_dir = data_dir_realpath[0]\n",
296
  "Global.load_8bit = True\n",
app.py CHANGED
@@ -14,6 +14,7 @@ from llama_lora.utils.data import init_data_dir
14
  def main(
15
  base_model: str = "",
16
  data_dir: str = "",
 
17
  # Allows to listen on all interfaces by providing '0.0.0.0'.
18
  server_name: str = "127.0.0.1",
19
  share: bool = False,
@@ -29,6 +30,9 @@ def main(
29
 
30
  :param base_model: (required) The name of the default base model to use.
31
  :param data_dir: (required) The path to the directory to store data.
 
 
 
32
  :param server_name: Allows to listen on all interfaces by providing '0.0.0.0'.
33
  :param share: Create a public Gradio URL.
34
 
@@ -46,7 +50,16 @@ def main(
46
  data_dir
47
  ), "Please specify a --data_dir, e.g. --data_dir='./data'"
48
 
49
- Global.default_base_model_name = base_model
 
 
 
 
 
 
 
 
 
50
  Global.data_dir = os.path.abspath(data_dir)
51
  Global.load_8bit = load_8bit
52
 
 
14
  def main(
15
  base_model: str = "",
16
  data_dir: str = "",
17
+ base_model_choices: str = "",
18
  # Allows to listen on all interfaces by providing '0.0.0.0'.
19
  server_name: str = "127.0.0.1",
20
  share: bool = False,
 
30
 
31
  :param base_model: (required) The name of the default base model to use.
32
  :param data_dir: (required) The path to the directory to store data.
33
+
34
+ :param base_model_choices: Base model selections to display on the UI, seperated by ",". For example: 'decapoda-research/llama-7b-hf,nomic-ai/gpt4all-j'.
35
+
36
  :param server_name: Allows to listen on all interfaces by providing '0.0.0.0'.
37
  :param share: Create a public Gradio URL.
38
 
 
50
  data_dir
51
  ), "Please specify a --data_dir, e.g. --data_dir='./data'"
52
 
53
+ Global.default_base_model_name = Global.base_model_name = base_model
54
+
55
+ if base_model_choices:
56
+ base_model_choices = base_model_choices.split(',')
57
+ base_model_choices = [name.strip() for name in base_model_choices]
58
+ Global.base_model_choices = base_model_choices
59
+
60
+ if base_model not in Global.base_model_choices:
61
+ Global.base_model_choices = [base_model] + Global.base_model_choices
62
+
63
  Global.data_dir = os.path.abspath(data_dir)
64
  Global.load_8bit = load_8bit
65
 
download_base_model.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import fire
2
+
3
+ from llama_lora.models import get_new_base_model, clear_cache
4
+
5
+
6
+ def main(
7
+ base_model_names: str = "",
8
+ ):
9
+ '''
10
+ Download and cache base models form Hugging Face.
11
+
12
+ :param base_model_names: Names of the base model you want to download, seperated by ",". For example: 'decapoda-research/llama-7b-hf,nomic-ai/gpt4all-j'.
13
+ '''
14
+
15
+ assert (
16
+ base_model_names
17
+ ), "Please specify --base_model_names, e.g. --base_model_names='decapoda-research/llama-7b-hf,nomic-ai/gpt4all-j'"
18
+
19
+ base_model_names = base_model_names.split(',')
20
+ base_model_names = [name.strip() for name in base_model_names]
21
+
22
+ print(f"Base models: {', '.join(base_model_names)}.")
23
+
24
+ for name in base_model_names:
25
+ print(f"Preparing {name}...")
26
+ get_new_base_model(name)
27
+ clear_cache()
28
+
29
+ print("Done.")
30
+
31
+ if __name__ == "__main__":
32
+ fire.Fire(main)
llama_lora/globals.py CHANGED
@@ -17,6 +17,8 @@ class Global:
17
  load_8bit: bool = False
18
 
19
  default_base_model_name: str = ""
 
 
20
 
21
  # Functions
22
  train_fn: Any = train
 
17
  load_8bit: bool = False
18
 
19
  default_base_model_name: str = ""
20
+ base_model_name: str = ""
21
+ base_model_choices: List[str] = []
22
 
23
  # Functions
24
  train_fn: Any = train
llama_lora/models.py CHANGED
@@ -2,9 +2,10 @@ import os
2
  import sys
3
  import gc
4
  import json
 
5
 
6
  import torch
7
- from transformers import LlamaForCausalLM, LlamaTokenizer
8
  from peft import PeftModel
9
 
10
  from .globals import Global
@@ -29,7 +30,7 @@ def get_new_base_model(base_model_name):
29
  device = get_device()
30
 
31
  if device == "cuda":
32
- model = LlamaForCausalLM.from_pretrained(
33
  base_model_name,
34
  load_in_8bit=Global.load_8bit,
35
  torch_dtype=torch.float16,
@@ -38,20 +39,22 @@ def get_new_base_model(base_model_name):
38
  device_map={'': 0},
39
  )
40
  elif device == "mps":
41
- model = LlamaForCausalLM.from_pretrained(
42
  base_model_name,
43
  device_map={"": device},
44
  torch_dtype=torch.float16,
45
  )
46
  else:
47
- model = LlamaForCausalLM.from_pretrained(
48
  base_model_name, device_map={"": device}, low_cpu_mem_usage=True
49
  )
50
 
51
  tokenizer = get_tokenizer(base_model_name)
52
- model.config.pad_token_id = tokenizer.pad_token_id = 0
53
- model.config.bos_token_id = tokenizer.bos_token_id = 1
54
- model.config.eos_token_id = tokenizer.eos_token_id = 2
 
 
55
 
56
  return model
57
 
@@ -64,7 +67,14 @@ def get_tokenizer(base_model_name):
64
  if loaded_tokenizer:
65
  return loaded_tokenizer
66
 
67
- tokenizer = LlamaTokenizer.from_pretrained(base_model_name)
 
 
 
 
 
 
 
68
  Global.loaded_tokenizers.set(base_model_name, tokenizer)
69
 
70
  return tokenizer
@@ -137,9 +147,10 @@ def get_model(
137
  device_map={"": device},
138
  )
139
 
140
- model.config.pad_token_id = get_tokenizer(base_model_name).pad_token_id = 0
141
- model.config.bos_token_id = 1
142
- model.config.eos_token_id = 2
 
143
 
144
  if not Global.load_8bit:
145
  model.half() # seems to fix bugs for some users.
 
2
  import sys
3
  import gc
4
  import json
5
+ import re
6
 
7
  import torch
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
9
  from peft import PeftModel
10
 
11
  from .globals import Global
 
30
  device = get_device()
31
 
32
  if device == "cuda":
33
+ model = AutoModelForCausalLM.from_pretrained(
34
  base_model_name,
35
  load_in_8bit=Global.load_8bit,
36
  torch_dtype=torch.float16,
 
39
  device_map={'': 0},
40
  )
41
  elif device == "mps":
42
+ model = AutoModelForCausalLM.from_pretrained(
43
  base_model_name,
44
  device_map={"": device},
45
  torch_dtype=torch.float16,
46
  )
47
  else:
48
+ model = AutoModelForCausalLM.from_pretrained(
49
  base_model_name, device_map={"": device}, low_cpu_mem_usage=True
50
  )
51
 
52
  tokenizer = get_tokenizer(base_model_name)
53
+
54
+ if re.match("[^/]+/llama", base_model_name):
55
+ model.config.pad_token_id = tokenizer.pad_token_id = 0
56
+ model.config.bos_token_id = tokenizer.bos_token_id = 1
57
+ model.config.eos_token_id = tokenizer.eos_token_id = 2
58
 
59
  return model
60
 
 
67
  if loaded_tokenizer:
68
  return loaded_tokenizer
69
 
70
+ try:
71
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
72
+ except Exception as e:
73
+ if 'LLaMATokenizer' in str(e):
74
+ tokenizer = LlamaTokenizer.from_pretrained(base_model_name)
75
+ else:
76
+ raise e
77
+
78
  Global.loaded_tokenizers.set(base_model_name, tokenizer)
79
 
80
  return tokenizer
 
147
  device_map={"": device},
148
  )
149
 
150
+ if re.match("[^/]+/llama", base_model_name):
151
+ model.config.pad_token_id = get_tokenizer(base_model_name).pad_token_id = 0
152
+ model.config.bos_token_id = 1
153
+ model.config.eos_token_id = 2
154
 
155
  if not Global.load_8bit:
156
  model.half() # seems to fix bugs for some users.
llama_lora/ui/finetune_ui.py CHANGED
@@ -299,7 +299,7 @@ def do_train(
299
  progress=gr.Progress(track_tqdm=should_training_progress_track_tqdm),
300
  ):
301
  try:
302
- base_model_name = Global.default_base_model_name
303
  output_dir = os.path.join(Global.data_dir, "lora_models", model_name)
304
  if os.path.exists(output_dir):
305
  if (not os.path.isdir(output_dir)) or os.path.exists(os.path.join(output_dir, 'adapter_config.json')):
 
299
  progress=gr.Progress(track_tqdm=should_training_progress_track_tqdm),
300
  ):
301
  try:
302
+ base_model_name = Global.base_model_name
303
  output_dir = os.path.join(Global.data_dir, "lora_models", model_name)
304
  if os.path.exists(output_dir):
305
  if (not os.path.isdir(output_dir)) or os.path.exists(os.path.join(output_dir, 'adapter_config.json')):
llama_lora/ui/inference_ui.py CHANGED
@@ -22,7 +22,7 @@ inference_output_lines = 12
22
 
23
 
24
  def prepare_inference(lora_model_name, progress=gr.Progress(track_tqdm=True)):
25
- base_model_name = Global.default_base_model_name
26
 
27
  try:
28
  get_tokenizer(base_model_name)
@@ -48,7 +48,7 @@ def do_inference(
48
  show_raw=False,
49
  progress=gr.Progress(track_tqdm=True),
50
  ):
51
- base_model_name = Global.default_base_model_name
52
 
53
  try:
54
  if Global.generation_force_stopped_at is not None:
@@ -257,7 +257,7 @@ def reload_selections(current_lora_model, current_prompt_template):
257
  current_prompt_template = current_prompt_template or next(
258
  iter(available_template_names_with_none), None)
259
 
260
- default_lora_models = ["tloen/alpaca-lora-7b"]
261
  available_lora_models = default_lora_models + get_available_lora_model_names()
262
  available_lora_models = available_lora_models + ["None"]
263
 
@@ -283,8 +283,12 @@ def handle_prompt_template_change(prompt_template, lora_model):
283
  "", visible=False)
284
  lora_mode_info = get_info_of_available_lora_model(lora_model)
285
  if lora_mode_info and isinstance(lora_mode_info, dict):
 
286
  model_prompt_template = lora_mode_info.get("prompt_template")
287
- if model_prompt_template and model_prompt_template != prompt_template:
 
 
 
288
  model_prompt_template_message_update = gr.Markdown.update(
289
  f"This model was trained with prompt template `{model_prompt_template}`.", visible=True)
290
 
@@ -331,7 +335,7 @@ def inference_ui():
331
  lora_model = gr.Dropdown(
332
  label="LoRA Model",
333
  elem_id="inference_lora_model",
334
- value="tloen/alpaca-lora-7b",
335
  allow_custom_value=True,
336
  )
337
  prompt_template = gr.Dropdown(
@@ -461,6 +465,8 @@ def inference_ui():
461
  interactive=False,
462
  elem_id="inference_raw_output")
463
 
 
 
464
  show_raw_change_event = show_raw.change(
465
  fn=lambda show_raw: gr.Accordion.update(visible=show_raw),
466
  inputs=[show_raw],
@@ -482,6 +488,14 @@ def inference_ui():
482
  variable_0, variable_1, variable_2, variable_3, variable_4, variable_5, variable_6, variable_7])
483
  things_that_might_timeout.append(prompt_template_change_event)
484
 
 
 
 
 
 
 
 
 
485
  lora_model_change_event = lora_model.change(
486
  fn=handle_lora_model_change,
487
  inputs=[lora_model, prompt_template],
@@ -538,7 +552,7 @@ def inference_ui():
538
 
539
  // Workaround default value not shown.
540
  document.querySelector('#inference_lora_model input').value =
541
- 'tloen/alpaca-lora-7b';
542
  }, 100);
543
 
544
  // Add tooltips
@@ -682,6 +696,30 @@ def inference_ui():
682
  }, 500);
683
  }, 0);
684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685
  // Debounced updating the prompt preview.
686
  setTimeout(function () {
687
  function debounce(func, wait) {
 
22
 
23
 
24
  def prepare_inference(lora_model_name, progress=gr.Progress(track_tqdm=True)):
25
+ base_model_name = Global.base_model_name
26
 
27
  try:
28
  get_tokenizer(base_model_name)
 
48
  show_raw=False,
49
  progress=gr.Progress(track_tqdm=True),
50
  ):
51
+ base_model_name = Global.base_model_name
52
 
53
  try:
54
  if Global.generation_force_stopped_at is not None:
 
257
  current_prompt_template = current_prompt_template or next(
258
  iter(available_template_names_with_none), None)
259
 
260
+ default_lora_models = []
261
  available_lora_models = default_lora_models + get_available_lora_model_names()
262
  available_lora_models = available_lora_models + ["None"]
263
 
 
283
  "", visible=False)
284
  lora_mode_info = get_info_of_available_lora_model(lora_model)
285
  if lora_mode_info and isinstance(lora_mode_info, dict):
286
+ model_base_model = lora_mode_info.get("base_model")
287
  model_prompt_template = lora_mode_info.get("prompt_template")
288
+ if model_base_model and model_base_model != Global.base_model_name:
289
+ model_prompt_template_message_update = gr.Markdown.update(
290
+ f"⚠️ This model was trained on top of base model `{model_base_model}`, it might not work properly with the selected base model `{Global.base_model_name}`.", visible=True)
291
+ elif model_prompt_template and model_prompt_template != prompt_template:
292
  model_prompt_template_message_update = gr.Markdown.update(
293
  f"This model was trained with prompt template `{model_prompt_template}`.", visible=True)
294
 
 
335
  lora_model = gr.Dropdown(
336
  label="LoRA Model",
337
  elem_id="inference_lora_model",
338
+ value="None",
339
  allow_custom_value=True,
340
  )
341
  prompt_template = gr.Dropdown(
 
465
  interactive=False,
466
  elem_id="inference_raw_output")
467
 
468
+ reload_selected_models_btn = gr.Button("", elem_id="inference_reload_selected_models_btn")
469
+
470
  show_raw_change_event = show_raw.change(
471
  fn=lambda show_raw: gr.Accordion.update(visible=show_raw),
472
  inputs=[show_raw],
 
488
  variable_0, variable_1, variable_2, variable_3, variable_4, variable_5, variable_6, variable_7])
489
  things_that_might_timeout.append(prompt_template_change_event)
490
 
491
+ reload_selected_models_btn_event = reload_selected_models_btn.click(
492
+ fn=handle_prompt_template_change,
493
+ inputs=[prompt_template, lora_model],
494
+ outputs=[
495
+ model_prompt_template_message,
496
+ variable_0, variable_1, variable_2, variable_3, variable_4, variable_5, variable_6, variable_7])
497
+ things_that_might_timeout.append(reload_selected_models_btn_event)
498
+
499
  lora_model_change_event = lora_model.change(
500
  fn=handle_lora_model_change,
501
  inputs=[lora_model, prompt_template],
 
552
 
553
  // Workaround default value not shown.
554
  document.querySelector('#inference_lora_model input').value =
555
+ 'None';
556
  }, 100);
557
 
558
  // Add tooltips
 
696
  }, 500);
697
  }, 0);
698
 
699
+ // Reload model selection on possible base model change.
700
+ setTimeout(function () {
701
+ const elem = document.getElementById('main_page_tabs_container');
702
+ if (!elem) return;
703
+
704
+ let prevClassList = [];
705
+
706
+ new MutationObserver(function (mutationsList, observer) {
707
+ const currentPrevClassList = prevClassList;
708
+ const currentClassList = Array.from(elem.classList);
709
+ prevClassList = Array.from(elem.classList);
710
+
711
+ if (!currentPrevClassList.includes('hide')) return;
712
+ if (currentClassList.includes('hide')) return;
713
+
714
+ const inference_reload_selected_models_btn_elem = document.getElementById('inference_reload_selected_models_btn');
715
+
716
+ if (inference_reload_selected_models_btn_elem) inference_reload_selected_models_btn_elem.click();
717
+ }).observe(elem, {
718
+ attributes: true,
719
+ attributeFilter: ['class'],
720
+ });
721
+ }, 0);
722
+
723
  // Debounced updating the prompt preview.
724
  setTimeout(function () {
725
  function debounce(func, wait) {
llama_lora/ui/main_page.py CHANGED
@@ -17,25 +17,50 @@ def main_page():
17
  css=main_page_custom_css(),
18
  ) as main_page_blocks:
19
  with gr.Column(elem_id="main_page_content"):
20
- gr.Markdown(f"""
21
- <h1 class="app_title_text">{title}</h1> <wbr />
22
- <h2 class="app_subtitle_text">{Global.ui_subtitle}</h2>
23
- """)
24
- with gr.Tab("Inference"):
25
- inference_ui()
26
- with gr.Tab("Fine-tuning"):
27
- finetune_ui()
28
- with gr.Tab("Tokenizer"):
29
- tokenizer_ui()
30
- info = []
31
- if Global.version:
32
- info.append(f"LLaMA-LoRA Tuner `{Global.version}`")
33
- info.append(f"Base model: `{Global.default_base_model_name}`")
34
- if Global.ui_show_sys_info:
35
- info.append(f"Data dir: `{Global.data_dir}`")
36
- gr.Markdown(f"""
37
- <small>{"&nbsp;&nbsp;·&nbsp;&nbsp;".join(info)}</small>
38
- """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  main_page_blocks.load(_js=f"""
40
  function () {{
41
  {popperjs_core_code()}
@@ -61,6 +86,17 @@ def main_page():
61
  });
62
  handle_gradio_container_element_class_change();
63
  }, 500);
 
 
 
 
 
 
 
 
 
 
 
64
  }
65
  """)
66
 
@@ -127,12 +163,77 @@ def main_page_custom_css():
127
  display: none;
128
  }
129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  #main_page_content > .tabs > .tab-nav * {
131
  font-size: 1rem;
132
  font-weight: 700;
133
  /* text-transform: uppercase; */
134
  }
135
 
 
 
 
 
 
 
 
 
 
 
 
136
  #inference_lora_model_group {
137
  border-radius: var(--block-radius);
138
  background: var(--block-background-fill);
@@ -147,7 +248,8 @@ def main_page_custom_css():
147
  position: absolute;
148
  bottom: 8px;
149
  left: 20px;
150
- z-index: 1;
 
151
  font-size: 12px;
152
  opacity: 0.7;
153
  }
@@ -515,3 +617,28 @@ def main_page_custom_css():
515
  .tippy-box[data-animation=scale-subtle][data-placement^=top]{transform-origin:bottom}.tippy-box[data-animation=scale-subtle][data-placement^=bottom]{transform-origin:top}.tippy-box[data-animation=scale-subtle][data-placement^=left]{transform-origin:right}.tippy-box[data-animation=scale-subtle][data-placement^=right]{transform-origin:left}.tippy-box[data-animation=scale-subtle][data-state=hidden]{transform:scale(.8);opacity:0}
516
  """
517
  return css
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  css=main_page_custom_css(),
18
  ) as main_page_blocks:
19
  with gr.Column(elem_id="main_page_content"):
20
+ with gr.Row():
21
+ gr.Markdown(
22
+ f"""
23
+ <h1 class="app_title_text">{title}</h1> <wbr />
24
+ <h2 class="app_subtitle_text">{Global.ui_subtitle}</h2>
25
+ """,
26
+ elem_id="page_title",
27
+ )
28
+ global_base_model_select = gr.Dropdown(
29
+ label="Base Model",
30
+ elem_id="global_base_model_select",
31
+ choices=Global.base_model_choices,
32
+ value=lambda: Global.base_model_name,
33
+ allow_custom_value=True,
34
+ )
35
+ # global_base_model_select_loading_status = gr.Markdown("", elem_id="global_base_model_select_loading_status")
36
+
37
+ with gr.Column(elem_id="main_page_tabs_container") as main_page_tabs_container:
38
+ with gr.Tab("Inference"):
39
+ inference_ui()
40
+ with gr.Tab("Fine-tuning"):
41
+ finetune_ui()
42
+ with gr.Tab("Tokenizer"):
43
+ tokenizer_ui()
44
+ please_select_a_base_model_message = gr.Markdown("Please select a base model.", visible=False)
45
+ current_base_model_hint = gr.Markdown(lambda: Global.base_model_name, elem_id="current_base_model_hint")
46
+ foot_info = gr.Markdown(get_foot_info)
47
+
48
+ global_base_model_select.change(
49
+ fn=pre_handle_change_base_model,
50
+ inputs=[],
51
+ outputs=[main_page_tabs_container]
52
+ ).then(
53
+ fn=handle_change_base_model,
54
+ inputs=[global_base_model_select],
55
+ outputs=[
56
+ main_page_tabs_container,
57
+ please_select_a_base_model_message,
58
+ current_base_model_hint,
59
+ # global_base_model_select_loading_status,
60
+ foot_info
61
+ ]
62
+ )
63
+
64
  main_page_blocks.load(_js=f"""
65
  function () {{
66
  {popperjs_core_code()}
 
86
  });
87
  handle_gradio_container_element_class_change();
88
  }, 500);
89
+ """ + """
90
+ setTimeout(function () {
91
+ // Workaround default value not shown.
92
+ const current_base_model_hint_elem = document.querySelector('#current_base_model_hint > p');
93
+ if (!current_base_model_hint_elem) return;
94
+
95
+ const base_model_name = current_base_model_hint_elem.innerText;
96
+ document.querySelector('#global_base_model_select input').value = base_model_name;
97
+ document.querySelector('#global_base_model_select').classList.add('show');
98
+ }, 3200);
99
+ """ + """
100
  }
101
  """)
102
 
 
163
  display: none;
164
  }
165
 
166
+ #page_title {
167
+ flex-grow: 3;
168
+ }
169
+ #global_base_model_select {
170
+ position: relative;
171
+ align-self: center;
172
+ min-width: 250px;
173
+ padding: 2px 2px;
174
+ border: 0;
175
+ box-shadow: none;
176
+ opacity: 0;
177
+ pointer-events: none;
178
+ }
179
+ #global_base_model_select.show {
180
+ opacity: 1;
181
+ pointer-events: auto;
182
+ }
183
+ #global_base_model_select label .wrap-inner {
184
+ padding: 2px 8px;
185
+ }
186
+ #global_base_model_select label span {
187
+ margin-bottom: 2px;
188
+ font-size: 80%;
189
+ position: absolute;
190
+ top: -14px;
191
+ left: 8px;
192
+ opacity: 0;
193
+ }
194
+ #global_base_model_select:hover label span {
195
+ opacity: 1;
196
+ }
197
+
198
+ #global_base_model_select_loading_status {
199
+ position: absolute;
200
+ pointer-events: none;
201
+ top: 0;
202
+ left: 0;
203
+ right: 0;
204
+ bottom: 0;
205
+ }
206
+ #global_base_model_select_loading_status > .wrap:not(.hide) {
207
+ z-index: 9999;
208
+ position: absolute;
209
+ top: 112px !important;
210
+ bottom: 0 !important;
211
+ max-height: none;
212
+ background: var(--background-fill-primary);
213
+ opacity: 0.8;
214
+ }
215
+
216
+ #current_base_model_hint {
217
+ display: none;
218
+ }
219
+
220
  #main_page_content > .tabs > .tab-nav * {
221
  font-size: 1rem;
222
  font-weight: 700;
223
  /* text-transform: uppercase; */
224
  }
225
 
226
+ #inference_reload_selected_models_btn {
227
+ position: absolute;
228
+ top: 0;
229
+ left: 0;
230
+ width: 0;
231
+ height: 0;
232
+ padding: 0;
233
+ opacity: 0;
234
+ pointer-events: none;
235
+ }
236
+
237
  #inference_lora_model_group {
238
  border-radius: var(--block-radius);
239
  background: var(--block-background-fill);
 
248
  position: absolute;
249
  bottom: 8px;
250
  left: 20px;
251
+ z-index: 61;
252
+ width: 999px;
253
  font-size: 12px;
254
  opacity: 0.7;
255
  }
 
617
  .tippy-box[data-animation=scale-subtle][data-placement^=top]{transform-origin:bottom}.tippy-box[data-animation=scale-subtle][data-placement^=bottom]{transform-origin:top}.tippy-box[data-animation=scale-subtle][data-placement^=left]{transform-origin:right}.tippy-box[data-animation=scale-subtle][data-placement^=right]{transform-origin:left}.tippy-box[data-animation=scale-subtle][data-state=hidden]{transform:scale(.8);opacity:0}
618
  """
619
  return css
620
+
621
+
622
+ def pre_handle_change_base_model():
623
+ return gr.Column.update(visible=False)
624
+
625
+
626
+ def handle_change_base_model(selected_base_model_name):
627
+ Global.base_model_name = selected_base_model_name
628
+
629
+ if Global.base_model_name:
630
+ return gr.Column.update(visible=True), gr.Markdown.update(visible=False), Global.base_model_name, get_foot_info()
631
+
632
+ return gr.Column.update(visible=False), gr.Markdown.update(visible=True), Global.base_model_name, get_foot_info()
633
+
634
+
635
+ def get_foot_info():
636
+ info = []
637
+ if Global.version:
638
+ info.append(f"LLaMA-LoRA Tuner `{Global.version}`")
639
+ info.append(f"Base model: `{Global.base_model_name}`")
640
+ if Global.ui_show_sys_info:
641
+ info.append(f"Data dir: `{Global.data_dir}`")
642
+ return f"""\
643
+ <small>{"&nbsp;&nbsp;·&nbsp;&nbsp;".join(info)}</small>
644
+ """
lora_models/alpaca-lora-7b/info.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "hf_model_name": "tloen/alpaca-lora-7b",
3
+ "load_from_hf": true,
4
+ "base_model": "decapoda-research/llama-7b-hf",
5
+ "prompt_template": "alpaca"
6
+ }