zforkash commited on
Commit
fc17b4b
1 Parent(s): 2815a70

FirstCommit

Browse files
Files changed (1) hide show
  1. app.py +65 -0
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from huggingface_hub import InferenceClient
4
+ from PIL import Image
5
+ import os
6
+
7
+ def setup_session():
8
+ if 'app_ready' not in st.session_state:
9
+ print("Powering up the Dragon Radar...")
10
+ st.session_state['app_ready'] = True
11
+ st.session_state['hf_token'] = os.getenv("HUGGINGFACE_TOKEN")
12
+ st.session_state['client'] = InferenceClient(api_key=st.session_state['hf_token'])
13
+
14
+ def main():
15
+ setup_session()
16
+
17
+ st.header("Anime & Friends Image Commentary")
18
+ st.write("Let your favorite characters react to any image!")
19
+
20
+ character = st.selectbox(
21
+ "Select your commentator",
22
+ ["goku", "elmo", "kirby", "pikachu"]
23
+ )
24
+
25
+ uploaded_img = st.file_uploader("Share your image!")
26
+
27
+ if uploaded_img is not None:
28
+ image = Image.open(uploaded_img)
29
+ st.image(image)
30
+
31
+
32
+ caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
33
+ base_caption = caption_model(image)[0]['generated_text']
34
+
35
+
36
+ character_reactions = {
37
+ "goku": f"Describe this image like you're Goku from Dragon Ball Z, mentioning power levels: {base_caption}",
38
+ "elmo": f"Describe this image like you're Elmo from Sesame Street, speaking in third person: {base_caption}",
39
+ "kirby": f"Describe this image like you're Kirby, being cute and mentioning food: {base_caption}",
40
+ "pikachu": f"Describe this image like you're Pikachu, using 'pika' frequently: {base_caption}"
41
+ }
42
+
43
+ messages = [
44
+ {
45
+ "role": "user",
46
+ "content": character_reactions[character]
47
+ }
48
+ ]
49
+
50
+ # Generate character response using Llama
51
+ response_stream = st.session_state['client'].chat.completions.create(
52
+ model="meta-llama/Llama-3.2-3B-Instruct",
53
+ messages=messages,
54
+ max_tokens=500,
55
+ stream=True
56
+ )
57
+
58
+ character_response = ''
59
+ for chunk in response_stream:
60
+ character_response += chunk.choices[0].delta.content
61
+
62
+ st.write(character_response)
63
+
64
+ if __name__ == '__main__':
65
+ main()