File size: 7,588 Bytes
36d9761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from os import path as osp
from torch.utils import data as data
from torchvision.transforms.functional import normalize

from basicsr.data.data_util import paths_from_lmdb
from basicsr.utils import FileClient, imfrombytes, img2tensor, rgb2ycbcr, scandir
from basicsr.utils.registry import DATASET_REGISTRY

from pathlib import Path
import random
import cv2
import numpy as np
import torch

@DATASET_REGISTRY.register()
class SingleImageDataset(data.Dataset):
    """Read only lq images in the test phase.

    Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc).

    There are two modes:
    1. 'meta_info_file': Use meta information file to generate paths.
    2. 'folder': Scan folders to generate paths.

    Args:
        opt (dict): Config for train datasets. It contains the following keys:
            dataroot_lq (str): Data root path for lq.
            meta_info_file (str): Path for meta information file.
            io_backend (dict): IO backend type and other kwarg.
    """

    def __init__(self, opt):
        super(SingleImageDataset, self).__init__()
        self.opt = opt
        # file client (io backend)
        self.file_client = None
        self.io_backend_opt = opt['io_backend']
        self.mean = opt['mean'] if 'mean' in opt else None
        self.std = opt['std'] if 'std' in opt else None
        self.lq_folder = opt['dataroot_lq']

        if self.io_backend_opt['type'] == 'lmdb':
            self.io_backend_opt['db_paths'] = [self.lq_folder]
            self.io_backend_opt['client_keys'] = ['lq']
            self.paths = paths_from_lmdb(self.lq_folder)
        elif 'meta_info_file' in self.opt:
            with open(self.opt['meta_info_file'], 'r') as fin:
                self.paths = [osp.join(self.lq_folder, line.rstrip().split(' ')[0]) for line in fin]
        else:
            self.paths = sorted(list(scandir(self.lq_folder, full_path=True)))

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)

        # load lq image
        lq_path = self.paths[index]
        img_bytes = self.file_client.get(lq_path, 'lq')
        img_lq = imfrombytes(img_bytes, float32=True)

        # color space transform
        if 'color' in self.opt and self.opt['color'] == 'y':
            img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None]

        # BGR to RGB, HWC to CHW, numpy to tensor
        img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
        # normalize
        if self.mean is not None or self.std is not None:
            normalize(img_lq, self.mean, self.std, inplace=True)
        return {'lq': img_lq, 'lq_path': lq_path}

    def __len__(self):
        return len(self.paths)

@DATASET_REGISTRY.register()
class SingleImageNPDataset(data.Dataset):
    """Read only lq images in the test phase.

    Read diffusion generated data for training CFW.

    Args:
        opt (dict): Config for train datasets. It contains the following keys:
            gt_path: Data root path for training data. The path needs to contain the following folders:
                gts: Ground-truth images.
                inputs: Input LQ images.
                latents: The corresponding HQ latent code generated by diffusion model given the input LQ image.
                samples: The corresponding HQ image given the HQ latent code, just for verification.
            io_backend (dict): IO backend type and other kwarg.
    """

    def __init__(self, opt):
        super(SingleImageNPDataset, self).__init__()
        self.opt = opt
        # file client (io backend)
        self.file_client = None
        self.io_backend_opt = opt['io_backend']
        self.mean = opt['mean'] if 'mean' in opt else None
        self.std = opt['std'] if 'std' in opt else None
        if 'image_type' not in opt:
            opt['image_type'] = 'png'

        if isinstance(opt['gt_path'], str):
            self.gt_paths = sorted([str(x) for x in Path(opt['gt_path']+'/gts').glob('*.'+opt['image_type'])])
            self.lq_paths = sorted([str(x) for x in Path(opt['gt_path']+'/inputs').glob('*.'+opt['image_type'])])
            self.np_paths = sorted([str(x) for x in Path(opt['gt_path']+'/latents').glob('*.npy')])
            self.sample_paths = sorted([str(x) for x in Path(opt['gt_path']+'/samples').glob('*.'+opt['image_type'])])
        else:
            self.gt_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/gts').glob('*.'+opt['image_type'])])
            self.lq_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/inputs').glob('*.'+opt['image_type'])])
            self.np_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/latents').glob('*.npy')])
            self.sample_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/samples').glob('*.'+opt['image_type'])])
            if len(opt['gt_path']) > 1:
                for i in range(len(opt['gt_path'])-1):
                    self.gt_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/gts').glob('*.'+opt['image_type'])]))
                    self.lq_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/inputs').glob('*.'+opt['image_type'])]))
                    self.np_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/latents').glob('*.npy')]))
                    self.sample_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/samples').glob('*.'+opt['image_type'])]))

        assert len(self.gt_paths) == len(self.lq_paths)
        assert len(self.gt_paths) == len(self.np_paths)
        assert len(self.gt_paths) == len(self.sample_paths)

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)

        # load lq image
        lq_path = self.lq_paths[index]
        gt_path = self.gt_paths[index]
        sample_path = self.sample_paths[index]
        np_path = self.np_paths[index]

        img_bytes = self.file_client.get(lq_path, 'lq')
        img_lq = imfrombytes(img_bytes, float32=True)

        img_bytes_gt = self.file_client.get(gt_path, 'gt')
        img_gt = imfrombytes(img_bytes_gt, float32=True)

        img_bytes_sample = self.file_client.get(sample_path, 'sample')
        img_sample = imfrombytes(img_bytes_sample, float32=True)

        latent_np = np.load(np_path)

        # color space transform
        if 'color' in self.opt and self.opt['color'] == 'y':
            img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None]
            img_gt = rgb2ycbcr(img_gt, y_only=True)[..., None]
            img_sample = rgb2ycbcr(img_sample, y_only=True)[..., None]

        # BGR to RGB, HWC to CHW, numpy to tensor
        img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
        img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True)
        img_sample = img2tensor(img_sample, bgr2rgb=True, float32=True)
        latent_np = torch.from_numpy(latent_np).float()
        latent_np = latent_np.to(img_gt.device)
        # normalize
        if self.mean is not None or self.std is not None:
            normalize(img_lq, self.mean, self.std, inplace=True)
            normalize(img_gt, self.mean, self.std, inplace=True)
            normalize(img_sample, self.mean, self.std, inplace=True)
        return {'lq': img_lq, 'lq_path': lq_path, 'gt': img_gt, 'gt_path': gt_path, 'latent': latent_np[0], 'latent_path': np_path, 'sample': img_sample, 'sample_path': sample_path}

    def __len__(self):
        return len(self.gt_paths)