File size: 3,776 Bytes
36d9761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import math
import torch
from torch import nn as nn
from torch.nn import functional as F

from basicsr.utils.registry import ARCH_REGISTRY
from .arch_util import flow_warp


class BasicModule(nn.Module):
    """Basic Module for SpyNet.
    """

    def __init__(self):
        super(BasicModule, self).__init__()

        self.basic_module = nn.Sequential(
            nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
            nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
            nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
            nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3))

    def forward(self, tensor_input):
        return self.basic_module(tensor_input)


@ARCH_REGISTRY.register()
class SpyNet(nn.Module):
    """SpyNet architecture.

    Args:
        load_path (str): path for pretrained SpyNet. Default: None.
    """

    def __init__(self, load_path=None):
        super(SpyNet, self).__init__()
        self.basic_module = nn.ModuleList([BasicModule() for _ in range(6)])
        if load_path:
            self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])

        self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
        self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))

    def preprocess(self, tensor_input):
        tensor_output = (tensor_input - self.mean) / self.std
        return tensor_output

    def process(self, ref, supp):
        flow = []

        ref = [self.preprocess(ref)]
        supp = [self.preprocess(supp)]

        for level in range(5):
            ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False))
            supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False))

        flow = ref[0].new_zeros(
            [ref[0].size(0), 2,
             int(math.floor(ref[0].size(2) / 2.0)),
             int(math.floor(ref[0].size(3) / 2.0))])

        for level in range(len(ref)):
            upsampled_flow = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0

            if upsampled_flow.size(2) != ref[level].size(2):
                upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 0, 0, 1], mode='replicate')
            if upsampled_flow.size(3) != ref[level].size(3):
                upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 1, 0, 0], mode='replicate')

            flow = self.basic_module[level](torch.cat([
                ref[level],
                flow_warp(
                    supp[level], upsampled_flow.permute(0, 2, 3, 1), interp_mode='bilinear', padding_mode='border'),
                upsampled_flow
            ], 1)) + upsampled_flow

        return flow

    def forward(self, ref, supp):
        assert ref.size() == supp.size()

        h, w = ref.size(2), ref.size(3)
        w_floor = math.floor(math.ceil(w / 32.0) * 32.0)
        h_floor = math.floor(math.ceil(h / 32.0) * 32.0)

        ref = F.interpolate(input=ref, size=(h_floor, w_floor), mode='bilinear', align_corners=False)
        supp = F.interpolate(input=supp, size=(h_floor, w_floor), mode='bilinear', align_corners=False)

        flow = F.interpolate(input=self.process(ref, supp), size=(h, w), mode='bilinear', align_corners=False)

        flow[:, 0, :, :] *= float(w) / float(w_floor)
        flow[:, 1, :, :] *= float(h) / float(h_floor)

        return flow