File size: 7,433 Bytes
36d9761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
from collections import Counter
from os import path as osp
from torch import distributed as dist
from tqdm import tqdm

from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.dist_util import get_dist_info
from basicsr.utils.registry import MODEL_REGISTRY
from .sr_model import SRModel


@MODEL_REGISTRY.register()
class VideoBaseModel(SRModel):
    """Base video SR model."""

    def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
        dataset = dataloader.dataset
        dataset_name = dataset.opt['name']
        with_metrics = self.opt['val']['metrics'] is not None
        # initialize self.metric_results
        # It is a dict: {
        #    'folder1': tensor (num_frame x len(metrics)),
        #    'folder2': tensor (num_frame x len(metrics))
        # }
        if with_metrics:
            if not hasattr(self, 'metric_results'):  # only execute in the first run
                self.metric_results = {}
                num_frame_each_folder = Counter(dataset.data_info['folder'])
                for folder, num_frame in num_frame_each_folder.items():
                    self.metric_results[folder] = torch.zeros(
                        num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda')
            # initialize the best metric results
            self._initialize_best_metric_results(dataset_name)
        # zero self.metric_results
        rank, world_size = get_dist_info()
        if with_metrics:
            for _, tensor in self.metric_results.items():
                tensor.zero_()

        metric_data = dict()
        # record all frames (border and center frames)
        if rank == 0:
            pbar = tqdm(total=len(dataset), unit='frame')
        for idx in range(rank, len(dataset), world_size):
            val_data = dataset[idx]
            val_data['lq'].unsqueeze_(0)
            val_data['gt'].unsqueeze_(0)
            folder = val_data['folder']
            frame_idx, max_idx = val_data['idx'].split('/')
            lq_path = val_data['lq_path']

            self.feed_data(val_data)
            self.test()
            visuals = self.get_current_visuals()
            result_img = tensor2img([visuals['result']])
            metric_data['img'] = result_img
            if 'gt' in visuals:
                gt_img = tensor2img([visuals['gt']])
                metric_data['img2'] = gt_img
                del self.gt

            # tentative for out of GPU memory
            del self.lq
            del self.output
            torch.cuda.empty_cache()

            if save_img:
                if self.opt['is_train']:
                    raise NotImplementedError('saving image is not supported during training.')
                else:
                    if 'vimeo' in dataset_name.lower():  # vimeo90k dataset
                        split_result = lq_path.split('/')
                        img_name = f'{split_result[-3]}_{split_result[-2]}_{split_result[-1].split(".")[0]}'
                    else:  # other datasets, e.g., REDS, Vid4
                        img_name = osp.splitext(osp.basename(lq_path))[0]

                    if self.opt['val']['suffix']:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
                                                 f'{img_name}_{self.opt["val"]["suffix"]}.png')
                    else:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
                                                 f'{img_name}_{self.opt["name"]}.png')
                imwrite(result_img, save_img_path)

            if with_metrics:
                # calculate metrics
                for metric_idx, opt_ in enumerate(self.opt['val']['metrics'].values()):
                    result = calculate_metric(metric_data, opt_)
                    self.metric_results[folder][int(frame_idx), metric_idx] += result

            # progress bar
            if rank == 0:
                for _ in range(world_size):
                    pbar.update(1)
                    pbar.set_description(f'Test {folder}: {int(frame_idx) + world_size}/{max_idx}')
        if rank == 0:
            pbar.close()

        if with_metrics:
            if self.opt['dist']:
                # collect data among GPUs
                for _, tensor in self.metric_results.items():
                    dist.reduce(tensor, 0)
                dist.barrier()
            else:
                pass  # assume use one gpu in non-dist testing

            if rank == 0:
                self._log_validation_metric_values(current_iter, dataset_name, tb_logger)

    def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
        logger = get_root_logger()
        logger.warning('nondist_validation is not implemented. Run dist_validation.')
        self.dist_validation(dataloader, current_iter, tb_logger, save_img)

    def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
        # ----------------- calculate the average values for each folder, and for each metric  ----------------- #
        # average all frames for each sub-folder
        # metric_results_avg is a dict:{
        #    'folder1': tensor (len(metrics)),
        #    'folder2': tensor (len(metrics))
        # }
        metric_results_avg = {
            folder: torch.mean(tensor, dim=0).cpu()
            for (folder, tensor) in self.metric_results.items()
        }
        # total_avg_results is a dict: {
        #    'metric1': float,
        #    'metric2': float
        # }
        total_avg_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
        for folder, tensor in metric_results_avg.items():
            for idx, metric in enumerate(total_avg_results.keys()):
                total_avg_results[metric] += metric_results_avg[folder][idx].item()
        # average among folders
        for metric in total_avg_results.keys():
            total_avg_results[metric] /= len(metric_results_avg)
            # update the best metric result
            self._update_best_metric_result(dataset_name, metric, total_avg_results[metric], current_iter)

        # ------------------------------------------ log the metric ------------------------------------------ #
        log_str = f'Validation {dataset_name}\n'
        for metric_idx, (metric, value) in enumerate(total_avg_results.items()):
            log_str += f'\t # {metric}: {value:.4f}'
            for folder, tensor in metric_results_avg.items():
                log_str += f'\t # {folder}: {tensor[metric_idx].item():.4f}'
            if hasattr(self, 'best_metric_results'):
                log_str += (f'\n\t    Best: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ '
                            f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')
            log_str += '\n'

        logger = get_root_logger()
        logger.info(log_str)
        if tb_logger:
            for metric_idx, (metric, value) in enumerate(total_avg_results.items()):
                tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
                for folder, tensor in metric_results_avg.items():
                    tb_logger.add_scalar(f'metrics/{metric}/{folder}', tensor[metric_idx].item(), current_iter)