File size: 6,159 Bytes
36d9761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/video/optflow.py  # noqa: E501
import cv2
import numpy as np
import os


def flowread(flow_path, quantize=False, concat_axis=0, *args, **kwargs):
    """Read an optical flow map.

    Args:
        flow_path (ndarray or str): Flow path.
        quantize (bool): whether to read quantized pair, if set to True,
            remaining args will be passed to :func:`dequantize_flow`.
        concat_axis (int): The axis that dx and dy are concatenated,
            can be either 0 or 1. Ignored if quantize is False.

    Returns:
        ndarray: Optical flow represented as a (h, w, 2) numpy array
    """
    if quantize:
        assert concat_axis in [0, 1]
        cat_flow = cv2.imread(flow_path, cv2.IMREAD_UNCHANGED)
        if cat_flow.ndim != 2:
            raise IOError(f'{flow_path} is not a valid quantized flow file, its dimension is {cat_flow.ndim}.')
        assert cat_flow.shape[concat_axis] % 2 == 0
        dx, dy = np.split(cat_flow, 2, axis=concat_axis)
        flow = dequantize_flow(dx, dy, *args, **kwargs)
    else:
        with open(flow_path, 'rb') as f:
            try:
                header = f.read(4).decode('utf-8')
            except Exception:
                raise IOError(f'Invalid flow file: {flow_path}')
            else:
                if header != 'PIEH':
                    raise IOError(f'Invalid flow file: {flow_path}, header does not contain PIEH')

            w = np.fromfile(f, np.int32, 1).squeeze()
            h = np.fromfile(f, np.int32, 1).squeeze()
            flow = np.fromfile(f, np.float32, w * h * 2).reshape((h, w, 2))

    return flow.astype(np.float32)


def flowwrite(flow, filename, quantize=False, concat_axis=0, *args, **kwargs):
    """Write optical flow to file.

    If the flow is not quantized, it will be saved as a .flo file losslessly,
    otherwise a jpeg image which is lossy but of much smaller size. (dx and dy
    will be concatenated horizontally into a single image if quantize is True.)

    Args:
        flow (ndarray): (h, w, 2) array of optical flow.
        filename (str): Output filepath.
        quantize (bool): Whether to quantize the flow and save it to 2 jpeg
            images. If set to True, remaining args will be passed to
            :func:`quantize_flow`.
        concat_axis (int): The axis that dx and dy are concatenated,
            can be either 0 or 1. Ignored if quantize is False.
    """
    if not quantize:
        with open(filename, 'wb') as f:
            f.write('PIEH'.encode('utf-8'))
            np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
            flow = flow.astype(np.float32)
            flow.tofile(f)
            f.flush()
    else:
        assert concat_axis in [0, 1]
        dx, dy = quantize_flow(flow, *args, **kwargs)
        dxdy = np.concatenate((dx, dy), axis=concat_axis)
        os.makedirs(os.path.dirname(filename), exist_ok=True)
        cv2.imwrite(filename, dxdy)


def quantize_flow(flow, max_val=0.02, norm=True):
    """Quantize flow to [0, 255].

    After this step, the size of flow will be much smaller, and can be
    dumped as jpeg images.

    Args:
        flow (ndarray): (h, w, 2) array of optical flow.
        max_val (float): Maximum value of flow, values beyond
                        [-max_val, max_val] will be truncated.
        norm (bool): Whether to divide flow values by image width/height.

    Returns:
        tuple[ndarray]: Quantized dx and dy.
    """
    h, w, _ = flow.shape
    dx = flow[..., 0]
    dy = flow[..., 1]
    if norm:
        dx = dx / w  # avoid inplace operations
        dy = dy / h
    # use 255 levels instead of 256 to make sure 0 is 0 after dequantization.
    flow_comps = [quantize(d, -max_val, max_val, 255, np.uint8) for d in [dx, dy]]
    return tuple(flow_comps)


def dequantize_flow(dx, dy, max_val=0.02, denorm=True):
    """Recover from quantized flow.

    Args:
        dx (ndarray): Quantized dx.
        dy (ndarray): Quantized dy.
        max_val (float): Maximum value used when quantizing.
        denorm (bool): Whether to multiply flow values with width/height.

    Returns:
        ndarray: Dequantized flow.
    """
    assert dx.shape == dy.shape
    assert dx.ndim == 2 or (dx.ndim == 3 and dx.shape[-1] == 1)

    dx, dy = [dequantize(d, -max_val, max_val, 255) for d in [dx, dy]]

    if denorm:
        dx *= dx.shape[1]
        dy *= dx.shape[0]
    flow = np.dstack((dx, dy))
    return flow


def quantize(arr, min_val, max_val, levels, dtype=np.int64):
    """Quantize an array of (-inf, inf) to [0, levels-1].

    Args:
        arr (ndarray): Input array.
        min_val (scalar): Minimum value to be clipped.
        max_val (scalar): Maximum value to be clipped.
        levels (int): Quantization levels.
        dtype (np.type): The type of the quantized array.

    Returns:
        tuple: Quantized array.
    """
    if not (isinstance(levels, int) and levels > 1):
        raise ValueError(f'levels must be a positive integer, but got {levels}')
    if min_val >= max_val:
        raise ValueError(f'min_val ({min_val}) must be smaller than max_val ({max_val})')

    arr = np.clip(arr, min_val, max_val) - min_val
    quantized_arr = np.minimum(np.floor(levels * arr / (max_val - min_val)).astype(dtype), levels - 1)

    return quantized_arr


def dequantize(arr, min_val, max_val, levels, dtype=np.float64):
    """Dequantize an array.

    Args:
        arr (ndarray): Input array.
        min_val (scalar): Minimum value to be clipped.
        max_val (scalar): Maximum value to be clipped.
        levels (int): Quantization levels.
        dtype (np.type): The type of the dequantized array.

    Returns:
        tuple: Dequantized array.
    """
    if not (isinstance(levels, int) and levels > 1):
        raise ValueError(f'levels must be a positive integer, but got {levels}')
    if min_val >= max_val:
        raise ValueError(f'min_val ({min_val}) must be smaller than max_val ({max_val})')

    dequantized_arr = (arr + 0.5).astype(dtype) * (max_val - min_val) / levels + min_val

    return dequantized_arr