File size: 4,772 Bytes
36d9761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import functools
import torch
from torch.nn import functional as F


def reduce_loss(loss, reduction):
    """Reduce loss as specified.

    Args:
        loss (Tensor): Elementwise loss tensor.
        reduction (str): Options are 'none', 'mean' and 'sum'.

    Returns:
        Tensor: Reduced loss tensor.
    """
    reduction_enum = F._Reduction.get_enum(reduction)
    # none: 0, elementwise_mean:1, sum: 2
    if reduction_enum == 0:
        return loss
    elif reduction_enum == 1:
        return loss.mean()
    else:
        return loss.sum()


def weight_reduce_loss(loss, weight=None, reduction='mean'):
    """Apply element-wise weight and reduce loss.

    Args:
        loss (Tensor): Element-wise loss.
        weight (Tensor): Element-wise weights. Default: None.
        reduction (str): Same as built-in losses of PyTorch. Options are
            'none', 'mean' and 'sum'. Default: 'mean'.

    Returns:
        Tensor: Loss values.
    """
    # if weight is specified, apply element-wise weight
    if weight is not None:
        assert weight.dim() == loss.dim()
        assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
        loss = loss * weight

    # if weight is not specified or reduction is sum, just reduce the loss
    if weight is None or reduction == 'sum':
        loss = reduce_loss(loss, reduction)
    # if reduction is mean, then compute mean over weight region
    elif reduction == 'mean':
        if weight.size(1) > 1:
            weight = weight.sum()
        else:
            weight = weight.sum() * loss.size(1)
        loss = loss.sum() / weight

    return loss


def weighted_loss(loss_func):
    """Create a weighted version of a given loss function.

    To use this decorator, the loss function must have the signature like
    `loss_func(pred, target, **kwargs)`. The function only needs to compute
    element-wise loss without any reduction. This decorator will add weight
    and reduction arguments to the function. The decorated function will have
    the signature like `loss_func(pred, target, weight=None, reduction='mean',
    **kwargs)`.

    :Example:

    >>> import torch
    >>> @weighted_loss
    >>> def l1_loss(pred, target):
    >>>     return (pred - target).abs()

    >>> pred = torch.Tensor([0, 2, 3])
    >>> target = torch.Tensor([1, 1, 1])
    >>> weight = torch.Tensor([1, 0, 1])

    >>> l1_loss(pred, target)
    tensor(1.3333)
    >>> l1_loss(pred, target, weight)
    tensor(1.5000)
    >>> l1_loss(pred, target, reduction='none')
    tensor([1., 1., 2.])
    >>> l1_loss(pred, target, weight, reduction='sum')
    tensor(3.)
    """

    @functools.wraps(loss_func)
    def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
        # get element-wise loss
        loss = loss_func(pred, target, **kwargs)
        loss = weight_reduce_loss(loss, weight, reduction)
        return loss

    return wrapper


def get_local_weights(residual, ksize):
    """Get local weights for generating the artifact map of LDL.

    It is only called by the `get_refined_artifact_map` function.

    Args:
        residual (Tensor): Residual between predicted and ground truth images.
        ksize (Int): size of the local window.

    Returns:
        Tensor: weight for each pixel to be discriminated as an artifact pixel
    """

    pad = (ksize - 1) // 2
    residual_pad = F.pad(residual, pad=[pad, pad, pad, pad], mode='reflect')

    unfolded_residual = residual_pad.unfold(2, ksize, 1).unfold(3, ksize, 1)
    pixel_level_weight = torch.var(unfolded_residual, dim=(-1, -2), unbiased=True, keepdim=True).squeeze(-1).squeeze(-1)

    return pixel_level_weight


def get_refined_artifact_map(img_gt, img_output, img_ema, ksize):
    """Calculate the artifact map of LDL
    (Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution. In CVPR 2022)

    Args:
        img_gt (Tensor): ground truth images.
        img_output (Tensor): output images given by the optimizing model.
        img_ema (Tensor): output images given by the ema model.
        ksize (Int): size of the local window.

    Returns:
        overall_weight: weight for each pixel to be discriminated as an artifact pixel
        (calculated based on both local and global observations).
    """

    residual_ema = torch.sum(torch.abs(img_gt - img_ema), 1, keepdim=True)
    residual_sr = torch.sum(torch.abs(img_gt - img_output), 1, keepdim=True)

    patch_level_weight = torch.var(residual_sr.clone(), dim=(-1, -2, -3), keepdim=True)**(1 / 5)
    pixel_level_weight = get_local_weights(residual_sr.clone(), ksize)
    overall_weight = patch_level_weight * pixel_level_weight

    overall_weight[residual_sr < residual_ema] = 0

    return overall_weight