File size: 9,115 Bytes
36d9761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import numpy as np
import random
import torch
from torch.nn import functional as F
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
from basicsr.data.transforms import paired_random_crop
from basicsr.models.sr_model import SRModel
from basicsr.utils import DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.utils.registry import MODEL_REGISTRY
@MODEL_REGISTRY.register(suffix='basicsr')
class RealESRNetModel(SRModel):
"""RealESRNet Model for Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
It is trained without GAN losses.
It mainly performs:
1. randomly synthesize LQ images in GPU tensors
2. optimize the networks with GAN training.
"""
def __init__(self, opt):
super(RealESRNetModel, self).__init__(opt)
self.jpeger = DiffJPEG(differentiable=False).cuda() # simulate JPEG compression artifacts
self.usm_sharpener = USMSharp().cuda() # do usm sharpening
self.queue_size = opt.get('queue_size', 180)
@torch.no_grad()
def _dequeue_and_enqueue(self):
"""It is the training pair pool for increasing the diversity in a batch.
Batch processing limits the diversity of synthetic degradations in a batch. For example, samples in a
batch could not have different resize scaling factors. Therefore, we employ this training pair pool
to increase the degradation diversity in a batch.
"""
# initialize
b, c, h, w = self.lq.size()
if not hasattr(self, 'queue_lr'):
assert self.queue_size % b == 0, f'queue size {self.queue_size} should be divisible by batch size {b}'
self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
_, c, h, w = self.gt.size()
self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
self.queue_ptr = 0
if self.queue_ptr == self.queue_size: # the pool is full
# do dequeue and enqueue
# shuffle
idx = torch.randperm(self.queue_size)
self.queue_lr = self.queue_lr[idx]
self.queue_gt = self.queue_gt[idx]
# get first b samples
lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
# update the queue
self.queue_lr[0:b, :, :, :] = self.lq.clone()
self.queue_gt[0:b, :, :, :] = self.gt.clone()
self.lq = lq_dequeue
self.gt = gt_dequeue
else:
# only do enqueue
self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
self.queue_ptr = self.queue_ptr + b
@torch.no_grad()
def feed_data(self, data):
"""Accept data from dataloader, and then add two-order degradations to obtain LQ images.
"""
if self.is_train and self.opt.get('high_order_degradation', True):
# training data synthesis
self.gt = data['gt'].to(self.device)
# USM sharpen the GT images
if self.opt['gt_usm'] is True:
self.gt = self.usm_sharpener(self.gt)
self.kernel1 = data['kernel1'].to(self.device)
self.kernel2 = data['kernel2'].to(self.device)
self.sinc_kernel = data['sinc_kernel'].to(self.device)
ori_h, ori_w = self.gt.size()[2:4]
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(self.gt, self.kernel1)
# random resize
updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob'])[0]
if updown_type == 'up':
scale = np.random.uniform(1, self.opt['resize_range'][1])
elif updown_type == 'down':
scale = np.random.uniform(self.opt['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = self.opt['gray_noise_prob']
if np.random.uniform() < self.opt['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out, sigma_range=self.opt['noise_range'], clip=True, rounds=False, gray_prob=gray_noise_prob)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.opt['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = self.jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
# blur
if np.random.uniform() < self.opt['second_blur_prob']:
out = filter2D(out, self.kernel2)
# random resize
updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob2'])[0]
if updown_type == 'up':
scale = np.random.uniform(1, self.opt['resize_range2'][1])
elif updown_type == 'down':
scale = np.random.uniform(self.opt['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out, size=(int(ori_h / self.opt['scale'] * scale), int(ori_w / self.opt['scale'] * scale)), mode=mode)
# add noise
gray_noise_prob = self.opt['gray_noise_prob2']
if np.random.uniform() < self.opt['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out, sigma_range=self.opt['noise_range2'], clip=True, rounds=False, gray_prob=gray_noise_prob)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.opt['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if np.random.uniform() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
out = filter2D(out, self.sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode)
out = filter2D(out, self.sinc_kernel)
# clamp and round
self.lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
# random crop
gt_size = self.opt['gt_size']
self.gt, self.lq = paired_random_crop(self.gt, self.lq, gt_size, self.opt['scale'])
# training pair pool
self._dequeue_and_enqueue()
self.lq = self.lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
else:
# for paired training or validation
self.lq = data['lq'].to(self.device)
if 'gt' in data:
self.gt = data['gt'].to(self.device)
self.gt_usm = self.usm_sharpener(self.gt)
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
# do not use the synthetic process during validation
self.is_train = False
super(RealESRNetModel, self).nondist_validation(dataloader, current_iter, tb_logger, save_img)
self.is_train = True
|