File size: 3,792 Bytes
36d9761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from torch import nn as nn

from basicsr.archs.arch_util import ResidualBlockNoBN, default_init_weights
from basicsr.utils.registry import ARCH_REGISTRY

@ARCH_REGISTRY.register()
class DEResNet(nn.Module):
    """Degradation Estimator with ResNetNoBN arch. v2.1, no vector anymore
    As shown in paper 'Towards Flexible Blind JPEG Artifacts Removal',
    resnet arch works for image quality estimation.
    Args:
        num_in_ch (int): channel number of inputs. Default: 3.
        num_degradation (int): num of degradation the DE should estimate. Default: 2(blur+noise).
        degradation_embed_size (int): embedding size of each degradation vector.
        degradation_degree_actv (int): activation function for degradation degree scalar. Default: sigmoid.
        num_feats (list): channel number of each stage.
        num_blocks (list): residual block of each stage.
        downscales (list): downscales of each stage.
    """

    def __init__(self,
                 num_in_ch=3,
                 num_degradation=2,
                 degradation_degree_actv='sigmoid',
                 num_feats=(64, 128, 256, 512),
                 num_blocks=(2, 2, 2, 2),
                 downscales=(2, 2, 2, 1)):
        super(DEResNet, self).__init__()

        assert isinstance(num_feats, list)
        assert isinstance(num_blocks, list)
        assert isinstance(downscales, list)
        assert len(num_feats) == len(num_blocks) and len(num_feats) == len(downscales)

        num_stage = len(num_feats)

        self.conv_first = nn.ModuleList()
        for _ in range(num_degradation):
            self.conv_first.append(nn.Conv2d(num_in_ch, num_feats[0], 3, 1, 1))
        self.body = nn.ModuleList()
        for _ in range(num_degradation):
            body = list()
            for stage in range(num_stage):
                for _ in range(num_blocks[stage]):
                    body.append(ResidualBlockNoBN(num_feats[stage]))
                if downscales[stage] == 1:
                    if stage < num_stage - 1 and num_feats[stage] != num_feats[stage + 1]:
                        body.append(nn.Conv2d(num_feats[stage], num_feats[stage + 1], 3, 1, 1))
                    continue
                elif downscales[stage] == 2:
                    body.append(nn.Conv2d(num_feats[stage], num_feats[min(stage + 1, num_stage - 1)], 3, 2, 1))
                else:
                    raise NotImplementedError
            self.body.append(nn.Sequential(*body))

        # self.body = nn.Sequential(*body)

        self.num_degradation = num_degradation
        self.fc_degree = nn.ModuleList()
        if degradation_degree_actv == 'sigmoid':
            actv = nn.Sigmoid
        elif degradation_degree_actv == 'tanh':
            actv = nn.Tanh
        else:
            raise NotImplementedError(f'only sigmoid and tanh are supported for degradation_degree_actv, '
                                      f'{degradation_degree_actv} is not supported yet.')
        for _ in range(num_degradation):
            self.fc_degree.append(
                nn.Sequential(
                    nn.Linear(num_feats[-1], 512),
                    nn.ReLU(inplace=True),
                    nn.Linear(512, 1),
                    actv(),
                ))

        self.avg_pool = nn.AdaptiveAvgPool2d(1)

        default_init_weights([self.conv_first, self.body, self.fc_degree], 0.1)

    def forward(self, x):
        degrees = []
        for i in range(self.num_degradation):
            x_out = self.conv_first[i](x)
            feat = self.body[i](x_out)
            feat = self.avg_pool(feat)
            feat = feat.squeeze(-1).squeeze(-1)
            # for i in range(self.num_degradation):
            degrees.append(self.fc_degree[i](feat).squeeze(-1))

        return degrees