File size: 7,374 Bytes
36d9761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import torchvision
import torch.nn.functional as F


def attn_cosine_sim(x, eps=1e-08):
    x = x[0]  # TEMP: getting rid of redundant dimension, TBF
    norm1 = x.norm(dim=2, keepdim=True)
    factor = torch.clamp(norm1 @ norm1.permute(0, 2, 1), min=eps)
    sim_matrix = (x @ x.permute(0, 2, 1)) / factor
    return sim_matrix


class VitExtractor:
    BLOCK_KEY = 'block'
    ATTN_KEY = 'attn'
    PATCH_IMD_KEY = 'patch_imd'
    QKV_KEY = 'qkv'
    KEY_LIST = [BLOCK_KEY, ATTN_KEY, PATCH_IMD_KEY, QKV_KEY]

    def __init__(self, model_name, device):
        # pdb.set_trace()
        self.model = torch.hub.load('facebookresearch/dino:main', model_name).to(device)
        self.model.eval()
        self.model_name = model_name
        self.hook_handlers = []
        self.layers_dict = {}
        self.outputs_dict = {}
        for key in VitExtractor.KEY_LIST:
            self.layers_dict[key] = []
            self.outputs_dict[key] = []
        self._init_hooks_data()

    def _init_hooks_data(self):
        self.layers_dict[VitExtractor.BLOCK_KEY] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
        self.layers_dict[VitExtractor.ATTN_KEY] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
        self.layers_dict[VitExtractor.QKV_KEY] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
        self.layers_dict[VitExtractor.PATCH_IMD_KEY] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
        for key in VitExtractor.KEY_LIST:
            # self.layers_dict[key] = kwargs[key] if key in kwargs.keys() else []
            self.outputs_dict[key] = []

    def _register_hooks(self, **kwargs):
        for block_idx, block in enumerate(self.model.blocks):
            if block_idx in self.layers_dict[VitExtractor.BLOCK_KEY]:
                self.hook_handlers.append(block.register_forward_hook(self._get_block_hook()))
            if block_idx in self.layers_dict[VitExtractor.ATTN_KEY]:
                self.hook_handlers.append(block.attn.attn_drop.register_forward_hook(self._get_attn_hook()))
            if block_idx in self.layers_dict[VitExtractor.QKV_KEY]:
                self.hook_handlers.append(block.attn.qkv.register_forward_hook(self._get_qkv_hook()))
            if block_idx in self.layers_dict[VitExtractor.PATCH_IMD_KEY]:
                self.hook_handlers.append(block.attn.register_forward_hook(self._get_patch_imd_hook()))

    def _clear_hooks(self):
        for handler in self.hook_handlers:
            handler.remove()
        self.hook_handlers = []

    def _get_block_hook(self):
        def _get_block_output(model, input, output):
            self.outputs_dict[VitExtractor.BLOCK_KEY].append(output)

        return _get_block_output

    def _get_attn_hook(self):
        def _get_attn_output(model, inp, output):
            self.outputs_dict[VitExtractor.ATTN_KEY].append(output)

        return _get_attn_output

    def _get_qkv_hook(self):
        def _get_qkv_output(model, inp, output):
            self.outputs_dict[VitExtractor.QKV_KEY].append(output)

        return _get_qkv_output

    # TODO: CHECK ATTN OUTPUT TUPLE
    def _get_patch_imd_hook(self):
        def _get_attn_output(model, inp, output):
            self.outputs_dict[VitExtractor.PATCH_IMD_KEY].append(output[0])

        return _get_attn_output

    def get_feature_from_input(self, input_img):  # List([B, N, D])
        self._register_hooks()
        self.model(input_img)
        feature = self.outputs_dict[VitExtractor.BLOCK_KEY]
        self._clear_hooks()
        self._init_hooks_data()
        return feature

    def get_qkv_feature_from_input(self, input_img):
        self._register_hooks()
        self.model(input_img)
        feature = self.outputs_dict[VitExtractor.QKV_KEY]
        self._clear_hooks()
        self._init_hooks_data()
        return feature

    def get_attn_feature_from_input(self, input_img):
        self._register_hooks()
        self.model(input_img)
        feature = self.outputs_dict[VitExtractor.ATTN_KEY]
        self._clear_hooks()
        self._init_hooks_data()
        return feature

    def get_patch_size(self):
        return 8 if "8" in self.model_name else 16

    def get_width_patch_num(self, input_img_shape):
        b, c, h, w = input_img_shape
        patch_size = self.get_patch_size()
        return w // patch_size

    def get_height_patch_num(self, input_img_shape):
        b, c, h, w = input_img_shape
        patch_size = self.get_patch_size()
        return h // patch_size

    def get_patch_num(self, input_img_shape):
        patch_num = 1 + (self.get_height_patch_num(input_img_shape) * self.get_width_patch_num(input_img_shape))
        return patch_num

    def get_head_num(self):
        if "dino" in self.model_name:
            return 6 if "s" in self.model_name else 12
        return 6 if "small" in self.model_name else 12

    def get_embedding_dim(self):
        if "dino" in self.model_name:
            return 384 if "s" in self.model_name else 768
        return 384 if "small" in self.model_name else 768

    def get_queries_from_qkv(self, qkv, input_img_shape):
        patch_num = self.get_patch_num(input_img_shape)
        head_num = self.get_head_num()
        embedding_dim = self.get_embedding_dim()
        q = qkv.reshape(patch_num, 3, head_num, embedding_dim // head_num).permute(1, 2, 0, 3)[0]
        return q

    def get_keys_from_qkv(self, qkv, input_img_shape):
        patch_num = self.get_patch_num(input_img_shape)
        head_num = self.get_head_num()
        embedding_dim = self.get_embedding_dim()
        k = qkv.reshape(patch_num, 3, head_num, embedding_dim // head_num).permute(1, 2, 0, 3)[1]
        return k

    def get_values_from_qkv(self, qkv, input_img_shape):
        patch_num = self.get_patch_num(input_img_shape)
        head_num = self.get_head_num()
        embedding_dim = self.get_embedding_dim()
        v = qkv.reshape(patch_num, 3, head_num, embedding_dim // head_num).permute(1, 2, 0, 3)[2]
        return v

    def get_keys_from_input(self, input_img, layer_num):
        qkv_features = self.get_qkv_feature_from_input(input_img)[layer_num]
        keys = self.get_keys_from_qkv(qkv_features, input_img.shape)
        return keys

    def get_keys_self_sim_from_input(self, input_img, layer_num):
        keys = self.get_keys_from_input(input_img, layer_num=layer_num)
        h, t, d = keys.shape
        concatenated_keys = keys.transpose(0, 1).reshape(t, h * d)
        ssim_map = attn_cosine_sim(concatenated_keys[None, None, ...])
        return ssim_map


class DinoStructureLoss:
    def __init__(self, ):
        self.extractor = VitExtractor(model_name="dino_vitb8", device="cuda")
        self.preprocess = torchvision.transforms.Compose([
            torchvision.transforms.Resize(224),
            torchvision.transforms.ToTensor(),
            torchvision.transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
        ])

    def calculate_global_ssim_loss(self, outputs, inputs):
        loss = 0.0
        for a, b in zip(inputs, outputs):  # avoid memory limitations
            with torch.no_grad():
                target_keys_self_sim = self.extractor.get_keys_self_sim_from_input(a.unsqueeze(0), layer_num=11)
            keys_ssim = self.extractor.get_keys_self_sim_from_input(b.unsqueeze(0), layer_num=11)
            loss += F.mse_loss(keys_ssim, target_keys_self_sim)
        return loss