File size: 13,945 Bytes
36d9761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import re
import requests
import sys
import copy
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
from transformers import AutoTokenizer, CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel
from peft import LoraConfig, get_peft_model
p = "src/"
sys.path.append(p)
from model import make_1step_sched, my_lora_fwd
from basicsr.archs.arch_util import default_init_weights


def get_layer_number(module_name):
    base_layers = {
        'down_blocks': 0,
        'mid_block': 4,
        'up_blocks': 5
    }

    if module_name == 'conv_out':
        return 9

    base_layer = None
    for key in base_layers:
        if key in module_name:
            base_layer = base_layers[key]
            break

    if base_layer is None:
        return None

    additional_layers = int(re.findall(r'\.(\d+)', module_name)[0]) #sum(int(num) for num in re.findall(r'\d+', module_name))
    final_layer = base_layer + additional_layers
    return final_layer


class S3Diff(torch.nn.Module):
    def __init__(self, sd_path=None, pretrained_path=None, lora_rank_unet=8, lora_rank_vae=4, block_embedding_dim=64):
        super().__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
        self.text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").cuda()
        self.sched = make_1step_sched(sd_path)
        self.guidance_scale = 1.07

        vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae")
        unet = UNet2DConditionModel.from_pretrained(sd_path, subfolder="unet")

        target_modules_vae = r"^encoder\..*(conv1|conv2|conv_in|conv_shortcut|conv|conv_out|to_k|to_q|to_v|to_out\.0)$"
        target_modules_unet = [
            "to_k", "to_q", "to_v", "to_out.0", "conv", "conv1", "conv2", "conv_shortcut", "conv_out",
            "proj_in", "proj_out", "ff.net.2", "ff.net.0.proj"
        ]

        num_embeddings = 64
        self.W = nn.Parameter(torch.randn(num_embeddings), requires_grad=False)

        self.vae_de_mlp = nn.Sequential(
            nn.Linear(num_embeddings * 4, 256),
            nn.ReLU(True),
        )

        self.unet_de_mlp = nn.Sequential(
            nn.Linear(num_embeddings * 4, 256),
            nn.ReLU(True),
        )

        self.vae_block_mlp = nn.Sequential(
            nn.Linear(block_embedding_dim, 64),
            nn.ReLU(True),
        )

        self.unet_block_mlp = nn.Sequential(
            nn.Linear(block_embedding_dim, 64),
            nn.ReLU(True),
        )

        self.vae_fuse_mlp = nn.Linear(256 + 64, lora_rank_vae ** 2)
        self.unet_fuse_mlp = nn.Linear(256 + 64, lora_rank_unet ** 2)

        default_init_weights([self.vae_de_mlp, self.unet_de_mlp, self.vae_block_mlp, self.unet_block_mlp, \
            self.vae_fuse_mlp, self.unet_fuse_mlp], 1e-5)

        # vae
        self.vae_block_embeddings = nn.Embedding(6, block_embedding_dim)
        self.unet_block_embeddings = nn.Embedding(10, block_embedding_dim)

        if pretrained_path is not None:
            sd = torch.load(pretrained_path, map_location="cpu")
            vae_lora_config = LoraConfig(r=sd["rank_vae"], init_lora_weights="gaussian", target_modules=sd["vae_lora_target_modules"])
            vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
            _sd_vae = vae.state_dict()
            for k in sd["state_dict_vae"]:
                _sd_vae[k] = sd["state_dict_vae"][k]
            vae.load_state_dict(_sd_vae)

            unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])
            unet.add_adapter(unet_lora_config)
            _sd_unet = unet.state_dict()
            for k in sd["state_dict_unet"]:
                _sd_unet[k] = sd["state_dict_unet"][k]
            unet.load_state_dict(_sd_unet)

            _vae_de_mlp = self.vae_de_mlp.state_dict()
            for k in sd["state_dict_vae_de_mlp"]:
                _vae_de_mlp[k] = sd["state_dict_vae_de_mlp"][k]
            self.vae_de_mlp.load_state_dict(_vae_de_mlp)

            _unet_de_mlp = self.unet_de_mlp.state_dict()
            for k in sd["state_dict_unet_de_mlp"]:
                _unet_de_mlp[k] = sd["state_dict_unet_de_mlp"][k]
            self.unet_de_mlp.load_state_dict(_unet_de_mlp)

            _vae_block_mlp = self.vae_block_mlp.state_dict()
            for k in sd["state_dict_vae_block_mlp"]:
                _vae_block_mlp[k] = sd["state_dict_vae_block_mlp"][k]
            self.vae_block_mlp.load_state_dict(_vae_block_mlp)

            _unet_block_mlp = self.unet_block_mlp.state_dict()
            for k in sd["state_dict_unet_block_mlp"]:
                _unet_block_mlp[k] = sd["state_dict_unet_block_mlp"][k]
            self.unet_block_mlp.load_state_dict(_unet_block_mlp)

            _vae_fuse_mlp = self.vae_fuse_mlp.state_dict()
            for k in sd["state_dict_vae_fuse_mlp"]:
                _vae_fuse_mlp[k] = sd["state_dict_vae_fuse_mlp"][k]
            self.vae_fuse_mlp.load_state_dict(_vae_fuse_mlp)

            _unet_fuse_mlp = self.unet_fuse_mlp.state_dict()
            for k in sd["state_dict_unet_fuse_mlp"]:
                _unet_fuse_mlp[k] = sd["state_dict_unet_fuse_mlp"][k]
            self.unet_fuse_mlp.load_state_dict(_unet_fuse_mlp)

            self.W = nn.Parameter(sd["w"], requires_grad=False)

            embeddings_state_dict = sd["state_embeddings"]
            self.vae_block_embeddings.load_state_dict(embeddings_state_dict['state_dict_vae_block'])
            self.unet_block_embeddings.load_state_dict(embeddings_state_dict['state_dict_unet_block'])
        else:
            print("Initializing model with random weights")
            vae_lora_config = LoraConfig(r=lora_rank_vae, init_lora_weights="gaussian",
                target_modules=target_modules_vae)
            vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
            unet_lora_config = LoraConfig(r=lora_rank_unet, init_lora_weights="gaussian",
                target_modules=target_modules_unet
            )
            unet.add_adapter(unet_lora_config)

        self.lora_rank_unet = lora_rank_unet
        self.lora_rank_vae = lora_rank_vae
        self.target_modules_vae = target_modules_vae
        self.target_modules_unet = target_modules_unet

        self.vae_lora_layers = []
        for name, module in vae.named_modules():
            if 'base_layer' in name:
                self.vae_lora_layers.append(name[:-len(".base_layer")])
                
        for name, module in vae.named_modules():
            if name in self.vae_lora_layers:
                module.forward = my_lora_fwd.__get__(module, module.__class__)

        self.unet_lora_layers = []
        for name, module in unet.named_modules():
            if 'base_layer' in name:
                self.unet_lora_layers.append(name[:-len(".base_layer")])

        for name, module in unet.named_modules():
            if name in self.unet_lora_layers:
                module.forward = my_lora_fwd.__get__(module, module.__class__)

        self.unet_layer_dict = {name: get_layer_number(name) for name in self.unet_lora_layers}

        unet.to("cuda")
        vae.to("cuda")
        self.unet, self.vae = unet, vae
        self.timesteps = torch.tensor([999], device="cuda").long()
        self.text_encoder.requires_grad_(False)

    def set_eval(self):
        self.unet.eval()
        self.vae.eval()
        self.vae_de_mlp.eval()
        self.unet_de_mlp.eval()
        self.vae_block_mlp.eval()
        self.unet_block_mlp.eval()
        self.vae_fuse_mlp.eval()
        self.unet_fuse_mlp.eval()

        self.vae_block_embeddings.requires_grad_(False)
        self.unet_block_embeddings.requires_grad_(False)

        self.unet.requires_grad_(False)
        self.vae.requires_grad_(False)

    def set_train(self):
        self.unet.train()
        self.vae.train()
        self.vae_de_mlp.train()
        self.unet_de_mlp.train()
        self.vae_block_mlp.train()
        self.unet_block_mlp.train()
        self.vae_fuse_mlp.train()
        self.unet_fuse_mlp.train()    

        self.vae_block_embeddings.requires_grad_(True)
        self.unet_block_embeddings.requires_grad_(True)

        for n, _p in self.unet.named_parameters():
            if "lora" in n:
                _p.requires_grad = True
        self.unet.conv_in.requires_grad_(True)

        for n, _p in self.vae.named_parameters():
            if "lora" in n:
                _p.requires_grad = True

    def forward(self, c_t, deg_score, pos_prompt, neg_prompt):
 
        if pos_prompt is not None:
            # encode the text prompt
            pos_caption_tokens = self.tokenizer(pos_prompt, max_length=self.tokenizer.model_max_length,
                                            padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
            pos_caption_enc = self.text_encoder(pos_caption_tokens)[0]
        else:
            pos_caption_enc = self.text_encoder(prompt_tokens)[0]

        if neg_prompt is not None:
            # encode the text prompt
            neg_caption_tokens = self.tokenizer(neg_prompt, max_length=self.tokenizer.model_max_length,
                                            padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
            neg_caption_enc = self.text_encoder(neg_caption_tokens)[0]
        else:
            neg_caption_enc = self.text_encoder(neg_prompt_tokens)[0]

        # degradation fourier embedding 
        deg_proj = deg_score[..., None] * self.W[None, None, :] * 2 * np.pi
        deg_proj = torch.cat([torch.sin(deg_proj), torch.cos(deg_proj)], dim=-1)
        deg_proj = torch.cat([deg_proj[:, 0], deg_proj[:, 1]], dim=-1)

        # degradation mlp forward
        vae_de_c_embed = self.vae_de_mlp(deg_proj)
        unet_de_c_embed = self.unet_de_mlp(deg_proj)

        # block embedding mlp forward
        vae_block_c_embeds = self.vae_block_mlp(self.vae_block_embeddings.weight)
        unet_block_c_embeds = self.unet_block_mlp(self.unet_block_embeddings.weight)
        vae_embeds = self.vae_fuse_mlp(torch.cat([vae_de_c_embed.unsqueeze(1).repeat(1, vae_block_c_embeds.shape[0], 1), \
            vae_block_c_embeds.unsqueeze(0).repeat(vae_de_c_embed.shape[0],1,1)], -1))
        unet_embeds = self.unet_fuse_mlp(torch.cat([unet_de_c_embed.unsqueeze(1).repeat(1, unet_block_c_embeds.shape[0], 1), \
            unet_block_c_embeds.unsqueeze(0).repeat(unet_de_c_embed.shape[0],1,1)], -1))

        for layer_name, module in self.vae.named_modules():
            if layer_name in self.vae_lora_layers:
                split_name = layer_name.split(".")
                if split_name[1] == 'down_blocks':
                    block_id = int(split_name[2])
                    vae_embed = vae_embeds[:, block_id]
                elif split_name[1] == 'mid_block':
                    vae_embed = vae_embeds[:, -2]
                else:
                    vae_embed = vae_embeds[:, -1]
                module.de_mod = vae_embed.reshape(-1, self.lora_rank_vae, self.lora_rank_vae)

        for layer_name, module in self.unet.named_modules():
            if layer_name in self.unet_lora_layers:
                split_name = layer_name.split(".")
                if split_name[0] == 'down_blocks':
                    block_id = int(split_name[1])
                    unet_embed = unet_embeds[:, block_id]
                elif split_name[0] == 'mid_block':
                    unet_embed = unet_embeds[:, 4]
                elif split_name[0] == 'up_blocks':
                    block_id = int(split_name[1]) + 5
                    unet_embed = unet_embeds[:, block_id]
                else:
                    unet_embed = unet_embeds[:, -1]
                module.de_mod = unet_embed.reshape(-1, self.lora_rank_unet, self.lora_rank_unet)

        encoded_control = self.vae.encode(c_t).latent_dist.sample() * self.vae.config.scaling_factor
        pos_model_pred = self.unet(encoded_control, self.timesteps, encoder_hidden_states=pos_caption_enc).sample
        neg_model_pred = self.unet(encoded_control, self.timesteps, encoder_hidden_states=neg_caption_enc).sample
        model_pred = neg_model_pred + self.guidance_scale * (pos_model_pred - neg_model_pred)

        x_denoised = self.sched.step(model_pred, self.timesteps, encoded_control, return_dict=True).prev_sample
        output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample).clamp(-1, 1)

        return output_image

    def save_model(self, outf):
        sd = {}
        sd["unet_lora_target_modules"] = self.target_modules_unet
        sd["vae_lora_target_modules"] = self.target_modules_vae
        sd["rank_unet"] = self.lora_rank_unet
        sd["rank_vae"] = self.lora_rank_vae
        sd["state_dict_unet"] = {k: v for k, v in self.unet.state_dict().items() if "lora" in k or "conv_in" in k}
        sd["state_dict_vae"] = {k: v for k, v in self.vae.state_dict().items() if "lora" in k or "skip_conv" in k}
        sd["state_dict_vae_de_mlp"] = {k: v for k, v in self.vae_de_mlp.state_dict().items()}
        sd["state_dict_unet_de_mlp"] = {k: v for k, v in self.unet_de_mlp.state_dict().items()}
        sd["state_dict_vae_block_mlp"] = {k: v for k, v in self.vae_block_mlp.state_dict().items()}
        sd["state_dict_unet_block_mlp"] = {k: v for k, v in self.unet_block_mlp.state_dict().items()}
        sd["state_dict_vae_fuse_mlp"] = {k: v for k, v in self.vae_fuse_mlp.state_dict().items()}
        sd["state_dict_unet_fuse_mlp"] = {k: v for k, v in self.unet_fuse_mlp.state_dict().items()}
        sd["w"] = self.W

        sd["state_embeddings"] = {
                    "state_dict_vae_block": self.vae_block_embeddings.state_dict(),
                    "state_dict_unet_block": self.unet_block_embeddings.state_dict(),
                }

        torch.save(sd, outf)