File size: 20,626 Bytes
36d9761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import os
import re
import requests
import sys
import copy
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
from transformers import AutoTokenizer, CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel
from peft import LoraConfig, get_peft_model
p = "src/"
sys.path.append(p)
from model import make_1step_sched, my_lora_fwd
from basicsr.archs.arch_util import default_init_weights
from my_utils.vaehook import VAEHook, perfcount


def get_layer_number(module_name):
    base_layers = {
        'down_blocks': 0,
        'mid_block': 4,
        'up_blocks': 5
    }

    if module_name == 'conv_out':
        return 9

    base_layer = None
    for key in base_layers:
        if key in module_name:
            base_layer = base_layers[key]
            break

    if base_layer is None:
        return None

    additional_layers = int(re.findall(r'\.(\d+)', module_name)[0]) #sum(int(num) for num in re.findall(r'\d+', module_name))
    final_layer = base_layer + additional_layers
    return final_layer


class S3Diff(torch.nn.Module):
    def __init__(self, sd_path=None, pretrained_path=None, lora_rank_unet=32, lora_rank_vae=16, block_embedding_dim=64, args=None):
        super().__init__()
        self.args = args
        self.latent_tiled_size = args.latent_tiled_size
        self.latent_tiled_overlap = args.latent_tiled_overlap

        self.tokenizer = AutoTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
        self.text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").cuda()
        self.sched = make_1step_sched(sd_path)
        self.guidance_scale = 1.07

        vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae")
        unet = UNet2DConditionModel.from_pretrained(sd_path, subfolder="unet")

        target_modules_vae = r"^encoder\..*(conv1|conv2|conv_in|conv_shortcut|conv|conv_out|to_k|to_q|to_v|to_out\.0)$"
        target_modules_unet = [
            "to_k", "to_q", "to_v", "to_out.0", "conv", "conv1", "conv2", "conv_shortcut", "conv_out",
            "proj_in", "proj_out", "ff.net.2", "ff.net.0.proj"
        ]

        num_embeddings = 64
        self.W = nn.Parameter(torch.randn(num_embeddings), requires_grad=False)

        self.vae_de_mlp = nn.Sequential(
            nn.Linear(num_embeddings * 4, 256),
            nn.ReLU(True),
        )

        self.unet_de_mlp = nn.Sequential(
            nn.Linear(num_embeddings * 4, 256),
            nn.ReLU(True),
        )

        self.vae_block_mlp = nn.Sequential(
            nn.Linear(block_embedding_dim, 64),
            nn.ReLU(True),
        )

        self.unet_block_mlp = nn.Sequential(
            nn.Linear(block_embedding_dim, 64),
            nn.ReLU(True),
        )

        self.vae_fuse_mlp = nn.Linear(256 + 64, lora_rank_vae ** 2)
        self.unet_fuse_mlp = nn.Linear(256 + 64, lora_rank_unet ** 2)

        default_init_weights([self.vae_de_mlp, self.unet_de_mlp, self.vae_block_mlp, self.unet_block_mlp, \
            self.vae_fuse_mlp, self.unet_fuse_mlp], 1e-5)

        # vae
        self.vae_block_embeddings = nn.Embedding(6, block_embedding_dim)
        self.unet_block_embeddings = nn.Embedding(10, block_embedding_dim)

        if pretrained_path is not None:
            sd = torch.load(pretrained_path, map_location="cpu")
            vae_lora_config = LoraConfig(r=sd["rank_vae"], init_lora_weights="gaussian", target_modules=sd["vae_lora_target_modules"])
            vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
            _sd_vae = vae.state_dict()
            for k in sd["state_dict_vae"]:
                _sd_vae[k] = sd["state_dict_vae"][k]
            vae.load_state_dict(_sd_vae)

            unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])
            unet.add_adapter(unet_lora_config)
            _sd_unet = unet.state_dict()
            for k in sd["state_dict_unet"]:
                _sd_unet[k] = sd["state_dict_unet"][k]
            unet.load_state_dict(_sd_unet)

            _vae_de_mlp = self.vae_de_mlp.state_dict()
            for k in sd["state_dict_vae_de_mlp"]:
                _vae_de_mlp[k] = sd["state_dict_vae_de_mlp"][k]
            self.vae_de_mlp.load_state_dict(_vae_de_mlp)

            _unet_de_mlp = self.unet_de_mlp.state_dict()
            for k in sd["state_dict_unet_de_mlp"]:
                _unet_de_mlp[k] = sd["state_dict_unet_de_mlp"][k]
            self.unet_de_mlp.load_state_dict(_unet_de_mlp)

            _vae_block_mlp = self.vae_block_mlp.state_dict()
            for k in sd["state_dict_vae_block_mlp"]:
                _vae_block_mlp[k] = sd["state_dict_vae_block_mlp"][k]
            self.vae_block_mlp.load_state_dict(_vae_block_mlp)

            _unet_block_mlp = self.unet_block_mlp.state_dict()
            for k in sd["state_dict_unet_block_mlp"]:
                _unet_block_mlp[k] = sd["state_dict_unet_block_mlp"][k]
            self.unet_block_mlp.load_state_dict(_unet_block_mlp)

            _vae_fuse_mlp = self.vae_fuse_mlp.state_dict()
            for k in sd["state_dict_vae_fuse_mlp"]:
                _vae_fuse_mlp[k] = sd["state_dict_vae_fuse_mlp"][k]
            self.vae_fuse_mlp.load_state_dict(_vae_fuse_mlp)

            _unet_fuse_mlp = self.unet_fuse_mlp.state_dict()
            for k in sd["state_dict_unet_fuse_mlp"]:
                _unet_fuse_mlp[k] = sd["state_dict_unet_fuse_mlp"][k]
            self.unet_fuse_mlp.load_state_dict(_unet_fuse_mlp)

            self.W = nn.Parameter(sd["w"], requires_grad=False)

            embeddings_state_dict = sd["state_embeddings"]
            self.vae_block_embeddings.load_state_dict(embeddings_state_dict['state_dict_vae_block'])
            self.unet_block_embeddings.load_state_dict(embeddings_state_dict['state_dict_unet_block'])
        else:
            print("Initializing model with random weights")
            vae_lora_config = LoraConfig(r=lora_rank_vae, init_lora_weights="gaussian",
                target_modules=target_modules_vae)
            vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
            unet_lora_config = LoraConfig(r=lora_rank_unet, init_lora_weights="gaussian",
                target_modules=target_modules_unet
            )
            unet.add_adapter(unet_lora_config)

        self.lora_rank_unet = lora_rank_unet
        self.lora_rank_vae = lora_rank_vae
        self.target_modules_vae = target_modules_vae
        self.target_modules_unet = target_modules_unet

        self.vae_lora_layers = []
        for name, module in vae.named_modules():
            if 'base_layer' in name:
                self.vae_lora_layers.append(name[:-len(".base_layer")])
                
        for name, module in vae.named_modules():
            if name in self.vae_lora_layers:
                module.forward = my_lora_fwd.__get__(module, module.__class__)

        self.unet_lora_layers = []
        for name, module in unet.named_modules():
            if 'base_layer' in name:
                self.unet_lora_layers.append(name[:-len(".base_layer")])

        for name, module in unet.named_modules():
            if name in self.unet_lora_layers:
                module.forward = my_lora_fwd.__get__(module, module.__class__)

        self.unet_layer_dict = {name: get_layer_number(name) for name in self.unet_lora_layers}

        unet.to("cuda")
        vae.to("cuda")
        self.unet, self.vae = unet, vae
        self.timesteps = torch.tensor([999], device="cuda").long()
        self.text_encoder.requires_grad_(False)

        # vae tile
        self._init_tiled_vae(encoder_tile_size=args.vae_encoder_tiled_size, decoder_tile_size=args.vae_decoder_tiled_size)

    def set_eval(self):
        self.unet.eval()
        self.vae.eval()
        self.vae_de_mlp.eval()
        self.unet_de_mlp.eval()
        self.vae_block_mlp.eval()
        self.unet_block_mlp.eval()
        self.vae_fuse_mlp.eval()
        self.unet_fuse_mlp.eval()

        self.vae_block_embeddings.requires_grad_(False)
        self.unet_block_embeddings.requires_grad_(False)

        self.unet.requires_grad_(False)
        self.vae.requires_grad_(False)

    def set_train(self):
        self.unet.train()
        self.vae.train()
        self.vae_de_mlp.train()
        self.unet_de_mlp.train()
        self.vae_block_mlp.train()
        self.unet_block_mlp.train()
        self.vae_fuse_mlp.train()
        self.unet_fuse_mlp.train()    

        self.vae_block_embeddings.requires_grad_(True)
        self.unet_block_embeddings.requires_grad_(True)

        for n, _p in self.unet.named_parameters():
            if "lora" in n:
                _p.requires_grad = True
        self.unet.conv_in.requires_grad_(True)

        for n, _p in self.vae.named_parameters():
            if "lora" in n:
                _p.requires_grad = True

    @perfcount
    @torch.no_grad()
    def forward(self, c_t, deg_score, pos_prompt, neg_prompt):
 
        if pos_prompt is not None:
            # encode the text prompt
            pos_caption_tokens = self.tokenizer(pos_prompt, max_length=self.tokenizer.model_max_length,
                                            padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
            pos_caption_enc = self.text_encoder(pos_caption_tokens)[0]
        else:
            pos_caption_enc = self.text_encoder(prompt_tokens)[0]

        if neg_prompt is not None:
            # encode the text prompt
            neg_caption_tokens = self.tokenizer(neg_prompt, max_length=self.tokenizer.model_max_length,
                                            padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
            neg_caption_enc = self.text_encoder(neg_caption_tokens)[0]
        else:
            neg_caption_enc = self.text_encoder(neg_prompt_tokens)[0]

        # degradation fourier embedding
        deg_proj = deg_score[..., None] * self.W[None, None, :] * 2 * np.pi
        deg_proj = torch.cat([torch.sin(deg_proj), torch.cos(deg_proj)], dim=-1)
        deg_proj = torch.cat([deg_proj[:, 0], deg_proj[:, 1]], dim=-1)

        # degradation mlp forward
        vae_de_c_embed = self.vae_de_mlp(deg_proj)
        unet_de_c_embed = self.unet_de_mlp(deg_proj)

        # block embedding mlp forward
        vae_block_c_embeds = self.vae_block_mlp(self.vae_block_embeddings.weight)
        unet_block_c_embeds = self.unet_block_mlp(self.unet_block_embeddings.weight)

        vae_embeds = self.vae_fuse_mlp(torch.cat([vae_de_c_embed.unsqueeze(1).repeat(1, vae_block_c_embeds.shape[0], 1), \
            vae_block_c_embeds.unsqueeze(0).repeat(vae_de_c_embed.shape[0],1,1)], -1))
        unet_embeds = self.unet_fuse_mlp(torch.cat([unet_de_c_embed.unsqueeze(1).repeat(1, unet_block_c_embeds.shape[0], 1), \
            unet_block_c_embeds.unsqueeze(0).repeat(unet_de_c_embed.shape[0],1,1)], -1))

        for layer_name, module in self.vae.named_modules():
            if layer_name in self.vae_lora_layers:
                split_name = layer_name.split(".")
                if split_name[1] == 'down_blocks':
                    block_id = int(split_name[2])
                    vae_embed = vae_embeds[:, block_id]
                elif split_name[1] == 'mid_block':
                    vae_embed = vae_embeds[:, -2]
                else:
                    vae_embed = vae_embeds[:, -1]
                module.de_mod = vae_embed.reshape(-1, self.lora_rank_vae, self.lora_rank_vae)

        for layer_name, module in self.unet.named_modules():
            if layer_name in self.unet_lora_layers:
                split_name = layer_name.split(".")
                if split_name[0] == 'down_blocks':
                    block_id = int(split_name[1])
                    unet_embed = unet_embeds[:, block_id]
                elif split_name[0] == 'mid_block':
                    unet_embed = unet_embeds[:, 4]
                elif split_name[0] == 'up_blocks':
                    block_id = int(split_name[1]) + 5
                    unet_embed = unet_embeds[:, block_id]
                else:
                    unet_embed = unet_embeds[:, -1]
                module.de_mod = unet_embed.reshape(-1, self.lora_rank_unet, self.lora_rank_unet)

        lq_latent = self.vae.encode(c_t).latent_dist.sample() * self.vae.config.scaling_factor

        ## add tile function
        _, _, h, w = lq_latent.size()
        tile_size, tile_overlap = (self.latent_tiled_size, self.latent_tiled_overlap)
        if h * w <= tile_size * tile_size:
            print(f"[Tiled Latent]: the input size is tiny and unnecessary to tile.")
            pos_model_pred = self.unet(lq_latent, self.timesteps, encoder_hidden_states=pos_caption_enc).sample
            neg_model_pred = self.unet(lq_latent, self.timesteps, encoder_hidden_states=neg_caption_enc).sample
            model_pred = neg_model_pred + self.guidance_scale * (pos_model_pred - neg_model_pred)
        else:
            print(f"[Tiled Latent]: the input size is {c_t.shape[-2]}x{c_t.shape[-1]}, need to tiled")
            # tile_weights = self._gaussian_weights(tile_size, tile_size, 1).to()
            tile_size = min(tile_size, min(h, w))
            tile_weights = self._gaussian_weights(tile_size, tile_size, 1).to(c_t.device)

            grid_rows = 0
            cur_x = 0
            while cur_x < lq_latent.size(-1):
                cur_x = max(grid_rows * tile_size-tile_overlap * grid_rows, 0)+tile_size
                grid_rows += 1

            grid_cols = 0
            cur_y = 0
            while cur_y < lq_latent.size(-2):
                cur_y = max(grid_cols * tile_size-tile_overlap * grid_cols, 0)+tile_size
                grid_cols += 1

            input_list = []
            noise_preds = []
            for row in range(grid_rows):
                noise_preds_row = []
                for col in range(grid_cols):
                    if col < grid_cols-1 or row < grid_rows-1:
                        # extract tile from input image
                        ofs_x = max(row * tile_size-tile_overlap * row, 0)
                        ofs_y = max(col * tile_size-tile_overlap * col, 0)
                        # input tile area on total image
                    if row == grid_rows-1:
                        ofs_x = w - tile_size
                    if col == grid_cols-1:
                        ofs_y = h - tile_size

                    input_start_x = ofs_x
                    input_end_x = ofs_x + tile_size
                    input_start_y = ofs_y
                    input_end_y = ofs_y + tile_size

                    # input tile dimensions
                    input_tile = lq_latent[:, :, input_start_y:input_end_y, input_start_x:input_end_x]
                    input_list.append(input_tile)

                    if len(input_list) == 1 or col == grid_cols-1:
                        input_list_t = torch.cat(input_list, dim=0)
                        # predict the noise residual
                        pos_model_pred = self.unet(input_list_t, self.timesteps, encoder_hidden_states=pos_caption_enc).sample
                        neg_model_pred = self.unet(input_list_t, self.timesteps, encoder_hidden_states=neg_caption_enc).sample
                        model_out = neg_model_pred + self.guidance_scale * (pos_model_pred - neg_model_pred)
                        input_list = []
                    noise_preds.append(model_out)

            # Stitch noise predictions for all tiles
            noise_pred = torch.zeros(lq_latent.shape, device=lq_latent.device)
            contributors = torch.zeros(lq_latent.shape, device=lq_latent.device)
            # Add each tile contribution to overall latents
            for row in range(grid_rows):
                for col in range(grid_cols):
                    if col < grid_cols-1 or row < grid_rows-1:
                        # extract tile from input image
                        ofs_x = max(row * tile_size-tile_overlap * row, 0)
                        ofs_y = max(col * tile_size-tile_overlap * col, 0)
                        # input tile area on total image
                    if row == grid_rows-1:
                        ofs_x = w - tile_size
                    if col == grid_cols-1:
                        ofs_y = h - tile_size

                    input_start_x = ofs_x
                    input_end_x = ofs_x + tile_size
                    input_start_y = ofs_y
                    input_end_y = ofs_y + tile_size

                    noise_pred[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += noise_preds[row*grid_cols + col] * tile_weights
                    contributors[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += tile_weights
            # Average overlapping areas with more than 1 contributor
            noise_pred /= contributors
            model_pred = noise_pred

        x_denoised = self.sched.step(model_pred, self.timesteps, lq_latent, return_dict=True).prev_sample
        output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample).clamp(-1, 1)

        return output_image

    def save_model(self, outf):
        sd = {}
        sd["unet_lora_target_modules"] = self.target_modules_unet
        sd["vae_lora_target_modules"] = self.target_modules_vae
        sd["rank_unet"] = self.lora_rank_unet
        sd["rank_vae"] = self.lora_rank_vae
        sd["state_dict_unet"] = {k: v for k, v in self.unet.state_dict().items() if "lora" in k or "conv_in" in k}
        sd["state_dict_vae"] = {k: v for k, v in self.vae.state_dict().items() if "lora" in k or "skip_conv" in k}
        sd["state_dict_vae_de_mlp"] = {k: v for k, v in self.vae_de_mlp.state_dict().items()}
        sd["state_dict_unet_de_mlp"] = {k: v for k, v in self.unet_de_mlp.state_dict().items()}
        sd["state_dict_vae_block_mlp"] = {k: v for k, v in self.vae_block_mlp.state_dict().items()}
        sd["state_dict_unet_block_mlp"] = {k: v for k, v in self.unet_block_mlp.state_dict().items()}
        sd["state_dict_vae_fuse_mlp"] = {k: v for k, v in self.vae_fuse_mlp.state_dict().items()}
        sd["state_dict_unet_fuse_mlp"] = {k: v for k, v in self.unet_fuse_mlp.state_dict().items()}
        sd["w"] = self.W

        sd["state_embeddings"] = {
                    "state_dict_vae_block": self.vae_block_embeddings.state_dict(),
                    "state_dict_unet_block": self.unet_block_embeddings.state_dict(),
                }

        torch.save(sd, outf)

    def _set_latent_tile(self,
        latent_tiled_size = 96,
        latent_tiled_overlap = 32):
        self.latent_tiled_size = latent_tiled_size
        self.latent_tiled_overlap = latent_tiled_overlap
    
    def _init_tiled_vae(self,
            encoder_tile_size = 256,
            decoder_tile_size = 256,
            fast_decoder = False,
            fast_encoder = False,
            color_fix = False,
            vae_to_gpu = True):
        # save original forward (only once)
        if not hasattr(self.vae.encoder, 'original_forward'):
            setattr(self.vae.encoder, 'original_forward', self.vae.encoder.forward)
        if not hasattr(self.vae.decoder, 'original_forward'):
            setattr(self.vae.decoder, 'original_forward', self.vae.decoder.forward)

        encoder = self.vae.encoder
        decoder = self.vae.decoder

        self.vae.encoder.forward = VAEHook(
            encoder, encoder_tile_size, is_decoder=False, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu)
        self.vae.decoder.forward = VAEHook(
            decoder, decoder_tile_size, is_decoder=True, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu)

    def _gaussian_weights(self, tile_width, tile_height, nbatches):
        """Generates a gaussian mask of weights for tile contributions"""
        from numpy import pi, exp, sqrt
        import numpy as np

        latent_width = tile_width
        latent_height = tile_height

        var = 0.01
        midpoint = (latent_width - 1) / 2  # -1 because index goes from 0 to latent_width - 1
        x_probs = [exp(-(x-midpoint)*(x-midpoint)/(latent_width*latent_width)/(2*var)) / sqrt(2*pi*var) for x in range(latent_width)]
        midpoint = latent_height / 2
        y_probs = [exp(-(y-midpoint)*(y-midpoint)/(latent_height*latent_height)/(2*var)) / sqrt(2*pi*var) for y in range(latent_height)]

        weights = np.outer(y_probs, x_probs)
        return torch.tile(torch.tensor(weights), (nbatches, self.unet.config.in_channels, 1, 1))