File size: 5,388 Bytes
4384dd9 0463e62 4384dd9 c5e4a40 34c993f 4384dd9 34c993f 4384dd9 34c993f 4384dd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
import os
import sys
import math
import subprocess
from typing import List
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from diffusers.utils.import_utils import is_xformers_available
from src.my_utils.testing_utils import parse_args_paired_testing
from src.de_net import DEResNet
from src.s3diff_tile import S3Diff
from torchvision import transforms
from utils.wavelet_color import wavelet_color_fix, adain_color_fix
tensor_transforms = transforms.Compose([
transforms.ToTensor(),
])
args = parse_args_paired_testing()
# Run the script to get pretrained models
subprocess.run(["bash", "get_pretrained_models.sh"])
# Load scheduler, tokenizer and models.
pretrained_model_path = 'checkpoints/s3diff.pkl'
t2i_path = 'stabilityai/sd-turbo'
de_net_path = 'assets/mm-realsr/de_net.pth'
# initialize net_sr
net_sr = S3Diff(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae, sd_path=t2i_path, pretrained_path=pretrained_model_path, args=args)
net_sr.set_eval()
# initalize degradation estimation network
net_de = DEResNet(num_in_ch=3, num_degradation=2)
net_de.load_model(de_net_path)
net_de = net_de.cuda()
net_de.eval()
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
net_sr.unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if args.gradient_checkpointing:
net_sr.unet.enable_gradient_checkpointing()
weight_dtype = torch.float32
device = "cuda"
# Move text_encode and vae to gpu and cast to weight_dtype
net_sr.to(device, dtype=weight_dtype)
net_de.to(device, dtype=weight_dtype)
@torch.no_grad()
def process(
input_image: Image.Image,
scale_factor: float,
cfg_scale: float,
latent_tiled_size: int,
latent_tiled_overlap: int,
align_method: str,
) -> List[np.ndarray]:
# positive_prompt = ""
# negative_prompt = ""
net_sr._set_latent_tile(latent_tiled_size = latent_tiled_size, latent_tiled_overlap = latent_tiled_overlap)
im_lr = tensor_transforms(input_image).unsqueeze(0).to(device)
ori_h, ori_w = im_lr.shape[2:]
im_lr_resize = F.interpolate(
im_lr,
size=(int(ori_h * scale_factor),
int(ori_w * scale_factor)),
mode='bicubic',
)
im_lr_resize = im_lr_resize.contiguous()
im_lr_resize_norm = im_lr_resize * 2 - 1.0
im_lr_resize_norm = torch.clamp(im_lr_resize_norm, -1.0, 1.0)
resize_h, resize_w = im_lr_resize_norm.shape[2:]
pad_h = (math.ceil(resize_h / 64)) * 64 - resize_h
pad_w = (math.ceil(resize_w / 64)) * 64 - resize_w
im_lr_resize_norm = F.pad(im_lr_resize_norm, pad=(0, pad_w, 0, pad_h), mode='reflect')
try:
with torch.autocast("cuda"):
deg_score = net_de(im_lr)
pos_tag_prompt = [args.pos_prompt]
neg_tag_prompt = [args.neg_prompt]
x_tgt_pred = net_sr(im_lr_resize_norm, deg_score, pos_prompt=pos_tag_prompt, neg_prompt=neg_tag_prompt)
x_tgt_pred = x_tgt_pred[:, :, :resize_h, :resize_w]
out_img = (x_tgt_pred * 0.5 + 0.5).cpu().detach()
output_pil = transforms.ToPILImage()(out_img[0])
if align_method == 'no fix':
image = output_pil
else:
im_lr_resize = transforms.ToPILImage()(im_lr_resize[0])
if align_method == 'wavelet':
image = wavelet_color_fix(output_pil, im_lr_resize)
elif align_method == 'adain':
image = adain_color_fix(output_pil, im_lr_resize)
except Exception as e:
print(e)
image = Image.new(mode="RGB", size=(512, 512))
return image
#
MARKDOWN = \
"""
## Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors
[GitHub](https://github.com/ArcticHare105/S3Diff) | [Paper](https://arxiv.org/abs/2409.17058)
If S3Diff is helpful for you, please help star the GitHub Repo. Thanks!
"""
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image = gr.Image(source="upload", type="pil")
run_button = gr.Button(label="Run")
with gr.Accordion("Options", open=True):
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set a value larger than 1 to enable it!)", minimum=1.0, maximum=1.1, value=1.07, step=0.01)
scale_factor = gr.Number(label="SR Scale", value=4)
latent_tiled_size = gr.Slider(label="Tile Size", minimum=64, maximum=160, value=96, step=1)
latent_tiled_overlap = gr.Slider(label="Tile Overlap", minimum=16, maximum=48, value=32, step=1)
align_method = gr.Dropdown(label="Color Correction", choices=["wavelet", "adain", "no fix"], value="wavelet")
with gr.Column():
result_image = gr.Image(label="Output", show_label=False, elem_id="result_image", source="canvas", width="100%", height="auto")
inputs = [
input_image,
scale_factor,
cfg_scale,
latent_tiled_size,
latent_tiled_overlap,
align_method
]
run_button.click(fn=process, inputs=inputs, outputs=[result_image])
block.launch()
|