File size: 35,015 Bytes
36d9761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 |
import cv2
import math
import numpy as np
import random
import torch
from scipy import special
from scipy.stats import multivariate_normal
from torchvision.transforms.functional_tensor import rgb_to_grayscale
# -------------------------------------------------------------------- #
# --------------------------- blur kernels --------------------------- #
# -------------------------------------------------------------------- #
# --------------------------- util functions --------------------------- #
def sigma_matrix2(sig_x, sig_y, theta):
"""Calculate the rotated sigma matrix (two dimensional matrix).
Args:
sig_x (float):
sig_y (float):
theta (float): Radian measurement.
Returns:
ndarray: Rotated sigma matrix.
"""
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]])
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
def mesh_grid(kernel_size):
"""Generate the mesh grid, centering at zero.
Args:
kernel_size (int):
Returns:
xy (ndarray): with the shape (kernel_size, kernel_size, 2)
xx (ndarray): with the shape (kernel_size, kernel_size)
yy (ndarray): with the shape (kernel_size, kernel_size)
"""
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
xx, yy = np.meshgrid(ax, ax)
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size,
1))).reshape(kernel_size, kernel_size, 2)
return xy, xx, yy
def pdf2(sigma_matrix, grid):
"""Calculate PDF of the bivariate Gaussian distribution.
Args:
sigma_matrix (ndarray): with the shape (2, 2)
grid (ndarray): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size.
Returns:
kernel (ndarrray): un-normalized kernel.
"""
inverse_sigma = np.linalg.inv(sigma_matrix)
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
return kernel
def cdf2(d_matrix, grid):
"""Calculate the CDF of the standard bivariate Gaussian distribution.
Used in skewed Gaussian distribution.
Args:
d_matrix (ndarrasy): skew matrix.
grid (ndarray): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size.
Returns:
cdf (ndarray): skewed cdf.
"""
rv = multivariate_normal([0, 0], [[1, 0], [0, 1]])
grid = np.dot(grid, d_matrix)
cdf = rv.cdf(grid)
return cdf
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True):
"""Generate a bivariate isotropic or anisotropic Gaussian kernel.
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
Args:
kernel_size (int):
sig_x (float):
sig_y (float):
theta (float): Radian measurement.
grid (ndarray, optional): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size. Default: None
isotropic (bool):
Returns:
kernel (ndarray): normalized kernel.
"""
if grid is None:
grid, _, _ = mesh_grid(kernel_size)
if isotropic:
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
else:
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
kernel = pdf2(sigma_matrix, grid)
kernel = kernel / np.sum(kernel)
return kernel
def bivariate_generalized_Gaussian(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
"""Generate a bivariate generalized Gaussian kernel.
``Paper: Parameter Estimation For Multivariate Generalized Gaussian Distributions``
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
Args:
kernel_size (int):
sig_x (float):
sig_y (float):
theta (float): Radian measurement.
beta (float): shape parameter, beta = 1 is the normal distribution.
grid (ndarray, optional): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size. Default: None
Returns:
kernel (ndarray): normalized kernel.
"""
if grid is None:
grid, _, _ = mesh_grid(kernel_size)
if isotropic:
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
else:
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
inverse_sigma = np.linalg.inv(sigma_matrix)
kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
kernel = kernel / np.sum(kernel)
return kernel
def bivariate_plateau(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
"""Generate a plateau-like anisotropic kernel.
1 / (1+x^(beta))
Reference: https://stats.stackexchange.com/questions/203629/is-there-a-plateau-shaped-distribution
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
Args:
kernel_size (int):
sig_x (float):
sig_y (float):
theta (float): Radian measurement.
beta (float): shape parameter, beta = 1 is the normal distribution.
grid (ndarray, optional): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size. Default: None
Returns:
kernel (ndarray): normalized kernel.
"""
if grid is None:
grid, _, _ = mesh_grid(kernel_size)
if isotropic:
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
else:
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
inverse_sigma = np.linalg.inv(sigma_matrix)
kernel = np.reciprocal(np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1)
kernel = kernel / np.sum(kernel)
return kernel
def random_bivariate_Gaussian(kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
noise_range=None,
isotropic=True,
return_sigma=False):
"""Randomly generate bivariate isotropic or anisotropic Gaussian kernels.
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
Args:
kernel_size (int):
sigma_x_range (tuple): [0.6, 5]
sigma_y_range (tuple): [0.6, 5]
rotation range (tuple): [-math.pi, math.pi]
noise_range(tuple, optional): multiplicative kernel noise,
[0.75, 1.25]. Default: None
Returns:
kernel (ndarray):
"""
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
if isotropic is False:
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
else:
sigma_y = sigma_x
rotation = 0
kernel = bivariate_Gaussian(kernel_size, sigma_x, sigma_y, rotation, isotropic=isotropic)
# add multiplicative noise
if noise_range is not None:
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
kernel = kernel * noise
kernel = kernel / np.sum(kernel)
if not return_sigma:
return kernel
else:
return kernel, [sigma_x, sigma_y]
def random_bivariate_generalized_Gaussian(kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
beta_range,
noise_range=None,
isotropic=True,
return_sigma=False):
"""Randomly generate bivariate generalized Gaussian kernels.
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
Args:
kernel_size (int):
sigma_x_range (tuple): [0.6, 5]
sigma_y_range (tuple): [0.6, 5]
rotation range (tuple): [-math.pi, math.pi]
beta_range (tuple): [0.5, 8]
noise_range(tuple, optional): multiplicative kernel noise,
[0.75, 1.25]. Default: None
Returns:
kernel (ndarray):
"""
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
if isotropic is False:
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
else:
sigma_y = sigma_x
rotation = 0
# assume beta_range[0] < 1 < beta_range[1]
if np.random.uniform() < 0.5:
beta = np.random.uniform(beta_range[0], 1)
else:
beta = np.random.uniform(1, beta_range[1])
kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
# add multiplicative noise
if noise_range is not None:
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
kernel = kernel * noise
kernel = kernel / np.sum(kernel)
if not return_sigma:
return kernel
else:
return kernel, [sigma_x, sigma_y]
def random_bivariate_plateau(kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
beta_range,
noise_range=None,
isotropic=True,
return_sigma=False):
"""Randomly generate bivariate plateau kernels.
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
Args:
kernel_size (int):
sigma_x_range (tuple): [0.6, 5]
sigma_y_range (tuple): [0.6, 5]
rotation range (tuple): [-math.pi/2, math.pi/2]
beta_range (tuple): [1, 4]
noise_range(tuple, optional): multiplicative kernel noise,
[0.75, 1.25]. Default: None
Returns:
kernel (ndarray):
"""
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
if isotropic is False:
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
else:
sigma_y = sigma_x
rotation = 0
# TODO: this may be not proper
if np.random.uniform() < 0.5:
beta = np.random.uniform(beta_range[0], 1)
else:
beta = np.random.uniform(1, beta_range[1])
kernel = bivariate_plateau(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
# add multiplicative noise
if noise_range is not None:
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
kernel = kernel * noise
kernel = kernel / np.sum(kernel)
if not return_sigma:
return kernel
else:
return kernel, [sigma_x, sigma_y]
def random_mixed_kernels(kernel_list,
kernel_prob,
kernel_size=21,
sigma_x_range=(0.6, 5),
sigma_y_range=(0.6, 5),
rotation_range=(-math.pi, math.pi),
betag_range=(0.5, 8),
betap_range=(0.5, 8),
noise_range=None,
return_sigma=False):
"""Randomly generate mixed kernels.
Args:
kernel_list (tuple): a list name of kernel types,
support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso',
'plateau_aniso']
kernel_prob (tuple): corresponding kernel probability for each
kernel type
kernel_size (int):
sigma_x_range (tuple): [0.6, 5]
sigma_y_range (tuple): [0.6, 5]
rotation range (tuple): [-math.pi, math.pi]
beta_range (tuple): [0.5, 8]
noise_range(tuple, optional): multiplicative kernel noise,
[0.75, 1.25]. Default: None
Returns:
kernel (ndarray):
"""
kernel_type = random.choices(kernel_list, kernel_prob)[0]
if not return_sigma:
if kernel_type == 'iso':
kernel = random_bivariate_Gaussian(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True, return_sigma=return_sigma)
elif kernel_type == 'aniso':
kernel = random_bivariate_Gaussian(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False, return_sigma=return_sigma)
elif kernel_type == 'generalized_iso':
kernel = random_bivariate_generalized_Gaussian(
kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
betag_range,
noise_range=noise_range,
isotropic=True,
return_sigma=return_sigma)
elif kernel_type == 'generalized_aniso':
kernel = random_bivariate_generalized_Gaussian(
kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
betag_range,
noise_range=noise_range,
isotropic=False,
return_sigma=return_sigma)
elif kernel_type == 'plateau_iso':
kernel = random_bivariate_plateau(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True, return_sigma=return_sigma)
elif kernel_type == 'plateau_aniso':
kernel = random_bivariate_plateau(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False, return_sigma=return_sigma)
return kernel
else:
if kernel_type == 'iso':
kernel, sigma_list = random_bivariate_Gaussian(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True, return_sigma=return_sigma)
elif kernel_type == 'aniso':
kernel, sigma_list = random_bivariate_Gaussian(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False, return_sigma=return_sigma)
elif kernel_type == 'generalized_iso':
kernel, sigma_list = random_bivariate_generalized_Gaussian(
kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
betag_range,
noise_range=noise_range,
isotropic=True,
return_sigma=return_sigma)
elif kernel_type == 'generalized_aniso':
kernel, sigma_list = random_bivariate_generalized_Gaussian(
kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
betag_range,
noise_range=noise_range,
isotropic=False,
return_sigma=return_sigma)
elif kernel_type == 'plateau_iso':
kernel, sigma_list = random_bivariate_plateau(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True, return_sigma=return_sigma)
elif kernel_type == 'plateau_aniso':
kernel, sigma_list = random_bivariate_plateau(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False, return_sigma=return_sigma)
return kernel, sigma_list
np.seterr(divide='ignore', invalid='ignore')
def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0):
"""2D sinc filter
Reference: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
Args:
cutoff (float): cutoff frequency in radians (pi is max)
kernel_size (int): horizontal and vertical size, must be odd.
pad_to (int): pad kernel size to desired size, must be odd or zero.
"""
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
kernel = np.fromfunction(
lambda x, y: cutoff * special.j1(cutoff * np.sqrt(
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)) / (2 * np.pi * np.sqrt(
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)), [kernel_size, kernel_size])
kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff**2 / (4 * np.pi)
kernel = kernel / np.sum(kernel)
if pad_to > kernel_size:
pad_size = (pad_to - kernel_size) // 2
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
return kernel
# ------------------------------------------------------------- #
# --------------------------- noise --------------------------- #
# ------------------------------------------------------------- #
# ----------------------- Gaussian Noise ----------------------- #
def generate_gaussian_noise(img, sigma=10, gray_noise=False):
"""Generate Gaussian noise.
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
sigma (float): Noise scale (measured in range 255). Default: 10.
Returns:
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
float32.
"""
if gray_noise:
noise = np.float32(np.random.randn(*(img.shape[0:2]))) * sigma / 255.
noise = np.expand_dims(noise, axis=2).repeat(3, axis=2)
else:
noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255.
return noise
def add_gaussian_noise(img, sigma=10, clip=True, rounds=False, gray_noise=False):
"""Add Gaussian noise.
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
sigma (float): Noise scale (measured in range 255). Default: 10.
Returns:
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
float32.
"""
noise = generate_gaussian_noise(img, sigma, gray_noise)
out = img + noise
if clip and rounds:
out = np.clip((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = np.clip(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
def generate_gaussian_noise_pt(img, sigma=10, gray_noise=0):
"""Add Gaussian noise (PyTorch version).
Args:
img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
scale (float | Tensor): Noise scale. Default: 1.0.
Returns:
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
float32.
"""
b, _, h, w = img.size()
if not isinstance(sigma, (float, int)):
sigma = sigma.view(img.size(0), 1, 1, 1)
if isinstance(gray_noise, (float, int)):
cal_gray_noise = gray_noise > 0
else:
gray_noise = gray_noise.view(b, 1, 1, 1)
cal_gray_noise = torch.sum(gray_noise) > 0
if cal_gray_noise:
noise_gray = torch.randn(*img.size()[2:4], dtype=img.dtype, device=img.device) * sigma / 255.
noise_gray = noise_gray.view(b, 1, h, w)
# always calculate color noise
noise = torch.randn(*img.size(), dtype=img.dtype, device=img.device) * sigma / 255.
if cal_gray_noise:
noise = noise * (1 - gray_noise) + noise_gray * gray_noise
return noise
def add_gaussian_noise_pt(img, sigma=10, gray_noise=0, clip=True, rounds=False):
"""Add Gaussian noise (PyTorch version).
Args:
img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
scale (float | Tensor): Noise scale. Default: 1.0.
Returns:
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
float32.
"""
noise = generate_gaussian_noise_pt(img, sigma, gray_noise)
out = img + noise
if clip and rounds:
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = torch.clamp(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
# ----------------------- Random Gaussian Noise ----------------------- #
def random_generate_gaussian_noise(img, sigma_range=(0, 10), gray_prob=0, return_sigma=False):
sigma = np.random.uniform(sigma_range[0], sigma_range[1])
if np.random.uniform() < gray_prob:
gray_noise = True
else:
gray_noise = False
if return_sigma:
return generate_gaussian_noise(img, sigma, gray_noise), sigma
else:
return generate_gaussian_noise(img, sigma, gray_noise)
def random_add_gaussian_noise(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False, return_sigma=False):
if return_sigma:
noise, sigma = random_generate_gaussian_noise(img, sigma_range, gray_prob, return_sigma=return_sigma)
else:
noise = random_generate_gaussian_noise(img, sigma_range, gray_prob, return_sigma=return_sigma)
out = img + noise
if clip and rounds:
out = np.clip((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = np.clip(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
if return_sigma:
return out, sigma
else:
return out
def random_generate_gaussian_noise_pt(img, sigma_range=(0, 10), gray_prob=0):
sigma = torch.rand(
img.size(0), dtype=img.dtype, device=img.device) * (sigma_range[1] - sigma_range[0]) + sigma_range[0]
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
gray_noise = (gray_noise < gray_prob).float()
return generate_gaussian_noise_pt(img, sigma, gray_noise)
def random_add_gaussian_noise_pt(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
noise = random_generate_gaussian_noise_pt(img, sigma_range, gray_prob)
out = img + noise
if clip and rounds:
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = torch.clamp(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
# ----------------------- Poisson (Shot) Noise ----------------------- #
def generate_poisson_noise(img, scale=1.0, gray_noise=False):
"""Generate poisson noise.
Reference: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/noise.py#L37-L219
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
scale (float): Noise scale. Default: 1.0.
gray_noise (bool): Whether generate gray noise. Default: False.
Returns:
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
float32.
"""
if gray_noise:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# round and clip image for counting vals correctly
img = np.clip((img * 255.0).round(), 0, 255) / 255.
vals = len(np.unique(img))
vals = 2**np.ceil(np.log2(vals))
out = np.float32(np.random.poisson(img * vals) / float(vals))
noise = out - img
if gray_noise:
noise = np.repeat(noise[:, :, np.newaxis], 3, axis=2)
return noise * scale
def add_poisson_noise(img, scale=1.0, clip=True, rounds=False, gray_noise=False):
"""Add poisson noise.
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
scale (float): Noise scale. Default: 1.0.
gray_noise (bool): Whether generate gray noise. Default: False.
Returns:
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
float32.
"""
noise = generate_poisson_noise(img, scale, gray_noise)
out = img + noise
if clip and rounds:
out = np.clip((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = np.clip(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
def generate_poisson_noise_pt(img, scale=1.0, gray_noise=0):
"""Generate a batch of poisson noise (PyTorch version)
Args:
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
Default: 1.0.
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
0 for False, 1 for True. Default: 0.
Returns:
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
float32.
"""
b, _, h, w = img.size()
if isinstance(gray_noise, (float, int)):
cal_gray_noise = gray_noise > 0
else:
gray_noise = gray_noise.view(b, 1, 1, 1)
cal_gray_noise = torch.sum(gray_noise) > 0
if cal_gray_noise:
img_gray = rgb_to_grayscale(img, num_output_channels=1)
# round and clip image for counting vals correctly
img_gray = torch.clamp((img_gray * 255.0).round(), 0, 255) / 255.
# use for-loop to get the unique values for each sample
vals_list = [len(torch.unique(img_gray[i, :, :, :])) for i in range(b)]
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
vals = img_gray.new_tensor(vals_list).view(b, 1, 1, 1)
out = torch.poisson(img_gray * vals) / vals
noise_gray = out - img_gray
noise_gray = noise_gray.expand(b, 3, h, w)
# always calculate color noise
# round and clip image for counting vals correctly
img = torch.clamp((img * 255.0).round(), 0, 255) / 255.
# use for-loop to get the unique values for each sample
vals_list = [len(torch.unique(img[i, :, :, :])) for i in range(b)]
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
vals = img.new_tensor(vals_list).view(b, 1, 1, 1)
out = torch.poisson(img * vals) / vals
noise = out - img
if cal_gray_noise:
noise = noise * (1 - gray_noise) + noise_gray * gray_noise
if not isinstance(scale, (float, int)):
scale = scale.view(b, 1, 1, 1)
return noise * scale
def add_poisson_noise_pt(img, scale=1.0, clip=True, rounds=False, gray_noise=0):
"""Add poisson noise to a batch of images (PyTorch version).
Args:
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
Default: 1.0.
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
0 for False, 1 for True. Default: 0.
Returns:
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
float32.
"""
noise = generate_poisson_noise_pt(img, scale, gray_noise)
out = img + noise
if clip and rounds:
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = torch.clamp(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
# ----------------------- Random Poisson (Shot) Noise ----------------------- #
def random_generate_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0):
scale = np.random.uniform(scale_range[0], scale_range[1])
if np.random.uniform() < gray_prob:
gray_noise = True
else:
gray_noise = False
return generate_poisson_noise(img, scale, gray_noise)
def random_add_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
noise = random_generate_poisson_noise(img, scale_range, gray_prob)
out = img + noise
if clip and rounds:
out = np.clip((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = np.clip(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
def random_generate_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0):
scale = torch.rand(
img.size(0), dtype=img.dtype, device=img.device) * (scale_range[1] - scale_range[0]) + scale_range[0]
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
gray_noise = (gray_noise < gray_prob).float()
return generate_poisson_noise_pt(img, scale, gray_noise)
def random_add_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
noise = random_generate_poisson_noise_pt(img, scale_range, gray_prob)
out = img + noise
if clip and rounds:
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = torch.clamp(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
# ----------------------- Random speckle Noise ----------------------- #
def random_add_speckle_noise(imgs, speckle_std):
std_range = speckle_std
std_l = std_range[0]
std_r = std_range[1]
mean=0
std=random.uniform(std_l/255.,std_r/255.)
outputs = []
for img in imgs:
gauss=np.random.normal(loc=mean,scale=std,size=img.shape)
noisy=img+gauss*img
noisy=np.clip(noisy,0,1).astype(np.float32)
outputs.append(noisy)
return outputs
def random_add_speckle_noise_pt(img, speckle_std):
std_range = speckle_std
std_l = std_range[0]
std_r = std_range[1]
mean=0
std=random.uniform(std_l/255.,std_r/255.)
gauss=torch.normal(mean=mean,std=std,size=img.size()).to(img.device)
noisy=img+gauss*img
noisy=torch.clamp(noisy,0,1)
return noisy
# ----------------------- Random saltpepper Noise ----------------------- #
def random_add_saltpepper_noise(imgs, saltpepper_amount, saltpepper_svsp):
p_range = saltpepper_amount
p = random.uniform(p_range[0], p_range[1])
q_range = saltpepper_svsp
q = random.uniform(q_range[0], q_range[1])
outputs = []
for img in imgs:
out = img.copy()
flipped = np.random.choice([True, False], size=img.shape,
p=[p, 1 - p])
salted = np.random.choice([True, False], size=img.shape,
p=[q, 1 - q])
peppered = ~salted
out[flipped & salted] = 1
out[flipped & peppered] = 0.
noisy = np.clip(out, 0, 1).astype(np.float32)
outputs.append(noisy)
return outputs
def random_add_saltpepper_noise_pt(imgs, saltpepper_amount, saltpepper_svsp):
p_range = saltpepper_amount
p = random.uniform(p_range[0], p_range[1])
q_range = saltpepper_svsp
q = random.uniform(q_range[0], q_range[1])
imgs = imgs.permute(0,2,3,1)
outputs = []
for i in range(imgs.size(0)):
img = imgs[i]
out = img.clone()
flipped = np.random.choice([True, False], size=img.shape,
p=[p, 1 - p])
salted = np.random.choice([True, False], size=img.shape,
p=[q, 1 - q])
peppered = ~salted
temp = flipped & salted
out[flipped & salted] = 1
out[flipped & peppered] = 0.
noisy = torch.clamp(out, 0, 1)
outputs.append(noisy.permute(2,0,1))
if len(outputs)>1:
return torch.cat(outputs, dim=0)
else:
return outputs[0].unsqueeze(0)
# ----------------------- Random screen Noise ----------------------- #
def random_add_screen_noise(imgs, linewidth, space):
#screen_noise = np.random.uniform() < self.params['noise_prob'][0]
linewidth = linewidth
linewidth = int(np.random.uniform(linewidth[0], linewidth[1]))
space = space
space = int(np.random.uniform(space[0], space[1]))
center_color = [213,230,230] # RGB
outputs = []
for img in imgs:
noise = img.copy()
tmp_mask = np.zeros((img.shape[1], img.shape[0]), dtype=np.float32)
for i in range(0, img.shape[0], int((space+linewidth))):
tmp_mask[:, i:(i+linewidth)] = 1
colour_masks = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.float32)
colour_masks[:,:,0] = (center_color[0] + np.random.uniform(-20, 20))/255.
colour_masks[:,:,1] = (center_color[1] + np.random.uniform(0, 20))/255.
colour_masks[:,:,2] = (center_color[2] + np.random.uniform(0, 20))/255.
noise_color = cv2.addWeighted(noise, 0.6, colour_masks, 0.4, 0.0)
noise = noise*(1-(tmp_mask[:,:,np.newaxis])) + noise_color*(tmp_mask[:,:,np.newaxis])
outputs.append(noise)
return outputs
# ------------------------------------------------------------------------ #
# --------------------------- JPEG compression --------------------------- #
# ------------------------------------------------------------------------ #
def add_jpg_compression(img, quality=90):
"""Add JPG compression artifacts.
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
quality (float): JPG compression quality. 0 for lowest quality, 100 for
best quality. Default: 90.
Returns:
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
float32.
"""
img = np.clip(img, 0, 1)
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(quality)]
_, encimg = cv2.imencode('.jpg', img * 255., encode_param)
img = np.float32(cv2.imdecode(encimg, 1)) / 255.
return img
def random_add_jpg_compression(img, quality_range=(90, 100), return_q=False):
"""Randomly add JPG compression artifacts.
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
quality_range (tuple[float] | list[float]): JPG compression quality
range. 0 for lowest quality, 100 for best quality.
Default: (90, 100).
Returns:
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
float32.
"""
quality = np.random.uniform(quality_range[0], quality_range[1])
if return_q:
return add_jpg_compression(img, quality), quality
else:
return add_jpg_compression(img, quality)
|