|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
from basicsr.archs.vgg_arch import VGGFeatureExtractor |
|
from basicsr.utils.registry import LOSS_REGISTRY |
|
from .loss_util import weighted_loss |
|
|
|
_reduction_modes = ['none', 'mean', 'sum'] |
|
|
|
|
|
@weighted_loss |
|
def l1_loss(pred, target): |
|
return F.l1_loss(pred, target, reduction='none') |
|
|
|
|
|
@weighted_loss |
|
def mse_loss(pred, target): |
|
return F.mse_loss(pred, target, reduction='none') |
|
|
|
|
|
@weighted_loss |
|
def charbonnier_loss(pred, target, eps=1e-12): |
|
return torch.sqrt((pred - target)**2 + eps) |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class L1Loss(nn.Module): |
|
"""L1 (mean absolute error, MAE) loss. |
|
|
|
Args: |
|
loss_weight (float): Loss weight for L1 loss. Default: 1.0. |
|
reduction (str): Specifies the reduction to apply to the output. |
|
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. |
|
""" |
|
|
|
def __init__(self, loss_weight=1.0, reduction='mean'): |
|
super(L1Loss, self).__init__() |
|
if reduction not in ['none', 'mean', 'sum']: |
|
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') |
|
|
|
self.loss_weight = loss_weight |
|
self.reduction = reduction |
|
|
|
def forward(self, pred, target, weight=None, **kwargs): |
|
""" |
|
Args: |
|
pred (Tensor): of shape (N, C, H, W). Predicted tensor. |
|
target (Tensor): of shape (N, C, H, W). Ground truth tensor. |
|
weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. |
|
""" |
|
return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction) |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class MSELoss(nn.Module): |
|
"""MSE (L2) loss. |
|
|
|
Args: |
|
loss_weight (float): Loss weight for MSE loss. Default: 1.0. |
|
reduction (str): Specifies the reduction to apply to the output. |
|
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. |
|
""" |
|
|
|
def __init__(self, loss_weight=1.0, reduction='mean'): |
|
super(MSELoss, self).__init__() |
|
if reduction not in ['none', 'mean', 'sum']: |
|
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') |
|
|
|
self.loss_weight = loss_weight |
|
self.reduction = reduction |
|
|
|
def forward(self, pred, target, weight=None, **kwargs): |
|
""" |
|
Args: |
|
pred (Tensor): of shape (N, C, H, W). Predicted tensor. |
|
target (Tensor): of shape (N, C, H, W). Ground truth tensor. |
|
weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. |
|
""" |
|
return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction) |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class CharbonnierLoss(nn.Module): |
|
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable |
|
variant of L1Loss). |
|
|
|
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate |
|
Super-Resolution". |
|
|
|
Args: |
|
loss_weight (float): Loss weight for L1 loss. Default: 1.0. |
|
reduction (str): Specifies the reduction to apply to the output. |
|
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. |
|
eps (float): A value used to control the curvature near zero. Default: 1e-12. |
|
""" |
|
|
|
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12): |
|
super(CharbonnierLoss, self).__init__() |
|
if reduction not in ['none', 'mean', 'sum']: |
|
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') |
|
|
|
self.loss_weight = loss_weight |
|
self.reduction = reduction |
|
self.eps = eps |
|
|
|
def forward(self, pred, target, weight=None, **kwargs): |
|
""" |
|
Args: |
|
pred (Tensor): of shape (N, C, H, W). Predicted tensor. |
|
target (Tensor): of shape (N, C, H, W). Ground truth tensor. |
|
weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. |
|
""" |
|
return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction) |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class WeightedTVLoss(L1Loss): |
|
"""Weighted TV loss. |
|
|
|
Args: |
|
loss_weight (float): Loss weight. Default: 1.0. |
|
""" |
|
|
|
def __init__(self, loss_weight=1.0, reduction='mean'): |
|
if reduction not in ['mean', 'sum']: |
|
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: mean | sum') |
|
super(WeightedTVLoss, self).__init__(loss_weight=loss_weight, reduction=reduction) |
|
|
|
def forward(self, pred, weight=None): |
|
if weight is None: |
|
y_weight = None |
|
x_weight = None |
|
else: |
|
y_weight = weight[:, :, :-1, :] |
|
x_weight = weight[:, :, :, :-1] |
|
|
|
y_diff = super().forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=y_weight) |
|
x_diff = super().forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=x_weight) |
|
|
|
loss = x_diff + y_diff |
|
|
|
return loss |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class PerceptualLoss(nn.Module): |
|
"""Perceptual loss with commonly used style loss. |
|
|
|
Args: |
|
layer_weights (dict): The weight for each layer of vgg feature. |
|
Here is an example: {'conv5_4': 1.}, which means the conv5_4 |
|
feature layer (before relu5_4) will be extracted with weight |
|
1.0 in calculating losses. |
|
vgg_type (str): The type of vgg network used as feature extractor. |
|
Default: 'vgg19'. |
|
use_input_norm (bool): If True, normalize the input image in vgg. |
|
Default: True. |
|
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1]. |
|
Default: False. |
|
perceptual_weight (float): If `perceptual_weight > 0`, the perceptual |
|
loss will be calculated and the loss will multiplied by the |
|
weight. Default: 1.0. |
|
style_weight (float): If `style_weight > 0`, the style loss will be |
|
calculated and the loss will multiplied by the weight. |
|
Default: 0. |
|
criterion (str): Criterion used for perceptual loss. Default: 'l1'. |
|
""" |
|
|
|
def __init__(self, |
|
layer_weights, |
|
vgg_type='vgg19', |
|
use_input_norm=True, |
|
range_norm=False, |
|
perceptual_weight=1.0, |
|
style_weight=0., |
|
criterion='l1'): |
|
super(PerceptualLoss, self).__init__() |
|
self.perceptual_weight = perceptual_weight |
|
self.style_weight = style_weight |
|
self.layer_weights = layer_weights |
|
self.vgg = VGGFeatureExtractor( |
|
layer_name_list=list(layer_weights.keys()), |
|
vgg_type=vgg_type, |
|
use_input_norm=use_input_norm, |
|
range_norm=range_norm) |
|
|
|
self.criterion_type = criterion |
|
if self.criterion_type == 'l1': |
|
self.criterion = torch.nn.L1Loss() |
|
elif self.criterion_type == 'l2': |
|
self.criterion = torch.nn.L2loss() |
|
elif self.criterion_type == 'fro': |
|
self.criterion = None |
|
else: |
|
raise NotImplementedError(f'{criterion} criterion has not been supported.') |
|
|
|
def forward(self, x, gt): |
|
"""Forward function. |
|
|
|
Args: |
|
x (Tensor): Input tensor with shape (n, c, h, w). |
|
gt (Tensor): Ground-truth tensor with shape (n, c, h, w). |
|
|
|
Returns: |
|
Tensor: Forward results. |
|
""" |
|
|
|
x_features = self.vgg(x) |
|
gt_features = self.vgg(gt.detach()) |
|
|
|
|
|
if self.perceptual_weight > 0: |
|
percep_loss = 0 |
|
for k in x_features.keys(): |
|
if self.criterion_type == 'fro': |
|
percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k] |
|
else: |
|
percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k] |
|
percep_loss *= self.perceptual_weight |
|
else: |
|
percep_loss = None |
|
|
|
|
|
if self.style_weight > 0: |
|
style_loss = 0 |
|
for k in x_features.keys(): |
|
if self.criterion_type == 'fro': |
|
style_loss += torch.norm( |
|
self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k] |
|
else: |
|
style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat( |
|
gt_features[k])) * self.layer_weights[k] |
|
style_loss *= self.style_weight |
|
else: |
|
style_loss = None |
|
|
|
return percep_loss, style_loss |
|
|
|
def _gram_mat(self, x): |
|
"""Calculate Gram matrix. |
|
|
|
Args: |
|
x (torch.Tensor): Tensor with shape of (n, c, h, w). |
|
|
|
Returns: |
|
torch.Tensor: Gram matrix. |
|
""" |
|
n, c, h, w = x.size() |
|
features = x.view(n, c, w * h) |
|
features_t = features.transpose(1, 2) |
|
gram = features.bmm(features_t) / (c * h * w) |
|
return gram |
|
|