S3Diff / basicsr /train.py
zhangap's picture
Upload 213 files
36d9761 verified
raw
history blame
9.67 kB
import datetime
import logging
import math
import time
import torch
from os import path as osp
from basicsr.data import build_dataloader, build_dataset
from basicsr.data.data_sampler import EnlargedSampler
from basicsr.data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher
from basicsr.models import build_model
from basicsr.utils import (AvgTimer, MessageLogger, check_resume, get_env_info, get_root_logger, get_time_str,
init_tb_logger, init_wandb_logger, make_exp_dirs, mkdir_and_rename, scandir)
from basicsr.utils.options import copy_opt_file, dict2str, parse_options
def init_tb_loggers(opt):
# initialize wandb logger before tensorboard logger to allow proper sync
if (opt['logger'].get('wandb') is not None) and (opt['logger']['wandb'].get('project')
is not None) and ('debug' not in opt['name']):
assert opt['logger'].get('use_tb_logger') is True, ('should turn on tensorboard when using wandb')
init_wandb_logger(opt)
tb_logger = None
if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name']:
tb_logger = init_tb_logger(log_dir=osp.join(opt['root_path'], 'tb_logger', opt['name']))
return tb_logger
def create_train_val_dataloader(opt, logger):
# create train and val dataloaders
train_loader, val_loaders = None, []
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
train_set = build_dataset(dataset_opt)
train_sampler = EnlargedSampler(train_set, opt['world_size'], opt['rank'], dataset_enlarge_ratio)
train_loader = build_dataloader(
train_set,
dataset_opt,
num_gpu=opt['num_gpu'],
dist=opt['dist'],
sampler=train_sampler,
seed=opt['manual_seed'])
num_iter_per_epoch = math.ceil(
len(train_set) * dataset_enlarge_ratio / (dataset_opt['batch_size_per_gpu'] * opt['world_size']))
total_iters = int(opt['train']['total_iter'])
total_epochs = math.ceil(total_iters / (num_iter_per_epoch))
logger.info('Training statistics:'
f'\n\tNumber of train images: {len(train_set)}'
f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}'
f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}'
f'\n\tWorld size (gpu number): {opt["world_size"]}'
f'\n\tRequire iter number per epoch: {num_iter_per_epoch}'
f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.')
elif phase.split('_')[0] == 'val':
val_set = build_dataset(dataset_opt)
val_loader = build_dataloader(
val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed'])
logger.info(f'Number of val images/folders in {dataset_opt["name"]}: {len(val_set)}')
val_loaders.append(val_loader)
else:
raise ValueError(f'Dataset phase {phase} is not recognized.')
return train_loader, train_sampler, val_loaders, total_epochs, total_iters
def load_resume_state(opt):
resume_state_path = None
if opt['auto_resume']:
state_path = osp.join('experiments', opt['name'], 'training_states')
if osp.isdir(state_path):
states = list(scandir(state_path, suffix='state', recursive=False, full_path=False))
if len(states) != 0:
states = [float(v.split('.state')[0]) for v in states]
resume_state_path = osp.join(state_path, f'{max(states):.0f}.state')
opt['path']['resume_state'] = resume_state_path
else:
if opt['path'].get('resume_state'):
resume_state_path = opt['path']['resume_state']
if resume_state_path is None:
resume_state = None
else:
device_id = torch.cuda.current_device()
resume_state = torch.load(resume_state_path, map_location=lambda storage, loc: storage.cuda(device_id))
check_resume(opt, resume_state['iter'])
return resume_state
def train_pipeline(root_path):
# parse options, set distributed setting, set random seed
opt, args = parse_options(root_path, is_train=True)
opt['root_path'] = root_path
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# load resume states if necessary
resume_state = load_resume_state(opt)
# mkdir for experiments and logger
if resume_state is None:
make_exp_dirs(opt)
if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name'] and opt['rank'] == 0:
mkdir_and_rename(osp.join(opt['root_path'], 'tb_logger', opt['name']))
# copy the yml file to the experiment root
copy_opt_file(args.opt, opt['path']['experiments_root'])
# WARNING: should not use get_root_logger in the above codes, including the called functions
# Otherwise the logger will not be properly initialized
log_file = osp.join(opt['path']['log'], f"train_{opt['name']}_{get_time_str()}.log")
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(opt))
# initialize wandb and tb loggers
tb_logger = init_tb_loggers(opt)
# create train and validation dataloaders
result = create_train_val_dataloader(opt, logger)
train_loader, train_sampler, val_loaders, total_epochs, total_iters = result
# create model
model = build_model(opt)
if resume_state: # resume training
model.resume_training(resume_state) # handle optimizers and schedulers
logger.info(f"Resuming training from epoch: {resume_state['epoch']}, iter: {resume_state['iter']}.")
start_epoch = resume_state['epoch']
current_iter = resume_state['iter']
else:
start_epoch = 0
current_iter = 0
# create message logger (formatted outputs)
msg_logger = MessageLogger(opt, current_iter, tb_logger)
# dataloader prefetcher
prefetch_mode = opt['datasets']['train'].get('prefetch_mode')
if prefetch_mode is None or prefetch_mode == 'cpu':
prefetcher = CPUPrefetcher(train_loader)
elif prefetch_mode == 'cuda':
prefetcher = CUDAPrefetcher(train_loader, opt)
logger.info(f'Use {prefetch_mode} prefetch dataloader')
if opt['datasets']['train'].get('pin_memory') is not True:
raise ValueError('Please set pin_memory=True for CUDAPrefetcher.')
else:
raise ValueError(f"Wrong prefetch_mode {prefetch_mode}. Supported ones are: None, 'cuda', 'cpu'.")
# training
logger.info(f'Start training from epoch: {start_epoch}, iter: {current_iter}')
data_timer, iter_timer = AvgTimer(), AvgTimer()
start_time = time.time()
for epoch in range(start_epoch, total_epochs + 1):
train_sampler.set_epoch(epoch)
prefetcher.reset()
train_data = prefetcher.next()
while train_data is not None:
data_timer.record()
current_iter += 1
if current_iter > total_iters:
break
# update learning rate
model.update_learning_rate(current_iter, warmup_iter=opt['train'].get('warmup_iter', -1))
# training
model.feed_data(train_data)
model.optimize_parameters(current_iter)
iter_timer.record()
if current_iter == 1:
# reset start time in msg_logger for more accurate eta_time
# not work in resume mode
msg_logger.reset_start_time()
# log
if current_iter % opt['logger']['print_freq'] == 0:
log_vars = {'epoch': epoch, 'iter': current_iter}
log_vars.update({'lrs': model.get_current_learning_rate()})
log_vars.update({'time': iter_timer.get_avg_time(), 'data_time': data_timer.get_avg_time()})
log_vars.update(model.get_current_log())
msg_logger(log_vars)
# save models and training states
if current_iter % opt['logger']['save_checkpoint_freq'] == 0:
logger.info('Saving models and training states.')
model.save(epoch, current_iter)
# validation
if opt.get('val') is not None and (current_iter % opt['val']['val_freq'] == 0):
if len(val_loaders) > 1:
logger.warning('Multiple validation datasets are *only* supported by SRModel.')
for val_loader in val_loaders:
model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
data_timer.start()
iter_timer.start()
train_data = prefetcher.next()
# end of iter
# end of epoch
consumed_time = str(datetime.timedelta(seconds=int(time.time() - start_time)))
logger.info(f'End of training. Time consumed: {consumed_time}')
logger.info('Save the latest model.')
model.save(epoch=-1, current_iter=-1) # -1 stands for the latest
if opt.get('val') is not None:
for val_loader in val_loaders:
model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img'])
if tb_logger:
tb_logger.close()
if __name__ == '__main__':
root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
train_pipeline(root_path)