S3Diff / basicsr /data /single_image_dataset.py
zhangap's picture
Upload 213 files
36d9761 verified
raw
history blame
7.59 kB
from os import path as osp
from torch.utils import data as data
from torchvision.transforms.functional import normalize
from basicsr.data.data_util import paths_from_lmdb
from basicsr.utils import FileClient, imfrombytes, img2tensor, rgb2ycbcr, scandir
from basicsr.utils.registry import DATASET_REGISTRY
from pathlib import Path
import random
import cv2
import numpy as np
import torch
@DATASET_REGISTRY.register()
class SingleImageDataset(data.Dataset):
"""Read only lq images in the test phase.
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc).
There are two modes:
1. 'meta_info_file': Use meta information file to generate paths.
2. 'folder': Scan folders to generate paths.
Args:
opt (dict): Config for train datasets. It contains the following keys:
dataroot_lq (str): Data root path for lq.
meta_info_file (str): Path for meta information file.
io_backend (dict): IO backend type and other kwarg.
"""
def __init__(self, opt):
super(SingleImageDataset, self).__init__()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.mean = opt['mean'] if 'mean' in opt else None
self.std = opt['std'] if 'std' in opt else None
self.lq_folder = opt['dataroot_lq']
if self.io_backend_opt['type'] == 'lmdb':
self.io_backend_opt['db_paths'] = [self.lq_folder]
self.io_backend_opt['client_keys'] = ['lq']
self.paths = paths_from_lmdb(self.lq_folder)
elif 'meta_info_file' in self.opt:
with open(self.opt['meta_info_file'], 'r') as fin:
self.paths = [osp.join(self.lq_folder, line.rstrip().split(' ')[0]) for line in fin]
else:
self.paths = sorted(list(scandir(self.lq_folder, full_path=True)))
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# load lq image
lq_path = self.paths[index]
img_bytes = self.file_client.get(lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
# color space transform
if 'color' in self.opt and self.opt['color'] == 'y':
img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None]
# BGR to RGB, HWC to CHW, numpy to tensor
img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
# normalize
if self.mean is not None or self.std is not None:
normalize(img_lq, self.mean, self.std, inplace=True)
return {'lq': img_lq, 'lq_path': lq_path}
def __len__(self):
return len(self.paths)
@DATASET_REGISTRY.register()
class SingleImageNPDataset(data.Dataset):
"""Read only lq images in the test phase.
Read diffusion generated data for training CFW.
Args:
opt (dict): Config for train datasets. It contains the following keys:
gt_path: Data root path for training data. The path needs to contain the following folders:
gts: Ground-truth images.
inputs: Input LQ images.
latents: The corresponding HQ latent code generated by diffusion model given the input LQ image.
samples: The corresponding HQ image given the HQ latent code, just for verification.
io_backend (dict): IO backend type and other kwarg.
"""
def __init__(self, opt):
super(SingleImageNPDataset, self).__init__()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.mean = opt['mean'] if 'mean' in opt else None
self.std = opt['std'] if 'std' in opt else None
if 'image_type' not in opt:
opt['image_type'] = 'png'
if isinstance(opt['gt_path'], str):
self.gt_paths = sorted([str(x) for x in Path(opt['gt_path']+'/gts').glob('*.'+opt['image_type'])])
self.lq_paths = sorted([str(x) for x in Path(opt['gt_path']+'/inputs').glob('*.'+opt['image_type'])])
self.np_paths = sorted([str(x) for x in Path(opt['gt_path']+'/latents').glob('*.npy')])
self.sample_paths = sorted([str(x) for x in Path(opt['gt_path']+'/samples').glob('*.'+opt['image_type'])])
else:
self.gt_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/gts').glob('*.'+opt['image_type'])])
self.lq_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/inputs').glob('*.'+opt['image_type'])])
self.np_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/latents').glob('*.npy')])
self.sample_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/samples').glob('*.'+opt['image_type'])])
if len(opt['gt_path']) > 1:
for i in range(len(opt['gt_path'])-1):
self.gt_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/gts').glob('*.'+opt['image_type'])]))
self.lq_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/inputs').glob('*.'+opt['image_type'])]))
self.np_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/latents').glob('*.npy')]))
self.sample_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/samples').glob('*.'+opt['image_type'])]))
assert len(self.gt_paths) == len(self.lq_paths)
assert len(self.gt_paths) == len(self.np_paths)
assert len(self.gt_paths) == len(self.sample_paths)
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# load lq image
lq_path = self.lq_paths[index]
gt_path = self.gt_paths[index]
sample_path = self.sample_paths[index]
np_path = self.np_paths[index]
img_bytes = self.file_client.get(lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
img_bytes_gt = self.file_client.get(gt_path, 'gt')
img_gt = imfrombytes(img_bytes_gt, float32=True)
img_bytes_sample = self.file_client.get(sample_path, 'sample')
img_sample = imfrombytes(img_bytes_sample, float32=True)
latent_np = np.load(np_path)
# color space transform
if 'color' in self.opt and self.opt['color'] == 'y':
img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None]
img_gt = rgb2ycbcr(img_gt, y_only=True)[..., None]
img_sample = rgb2ycbcr(img_sample, y_only=True)[..., None]
# BGR to RGB, HWC to CHW, numpy to tensor
img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True)
img_sample = img2tensor(img_sample, bgr2rgb=True, float32=True)
latent_np = torch.from_numpy(latent_np).float()
latent_np = latent_np.to(img_gt.device)
# normalize
if self.mean is not None or self.std is not None:
normalize(img_lq, self.mean, self.std, inplace=True)
normalize(img_gt, self.mean, self.std, inplace=True)
normalize(img_sample, self.mean, self.std, inplace=True)
return {'lq': img_lq, 'lq_path': lq_path, 'gt': img_gt, 'gt_path': gt_path, 'latent': latent_np[0], 'latent_path': np_path, 'sample': img_sample, 'sample_path': sample_path}
def __len__(self):
return len(self.gt_paths)