|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import builtins |
|
import datetime |
|
import os |
|
import time |
|
from collections import defaultdict, deque |
|
from pathlib import Path |
|
import json |
|
import subprocess |
|
|
|
import torch |
|
import torch.distributed as dist |
|
|
|
from typing import List, Dict, Tuple, Optional |
|
from torch import Tensor |
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value) |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if v is None: |
|
continue |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append( |
|
"{}: {}".format(name, str(meter)) |
|
) |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None): |
|
i = 0 |
|
if not header: |
|
header = '' |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt='{avg:.4f}') |
|
data_time = SmoothedValue(fmt='{avg:.4f}') |
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' |
|
log_msg = [ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data: {data}' |
|
] |
|
if torch.cuda.is_available(): |
|
log_msg.append('max mem: {memory:.0f}') |
|
log_msg = self.delimiter.join(log_msg) |
|
MB = 1024.0 * 1024.0 |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB)) |
|
else: |
|
print(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time))) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('{} Total time: {} ({:.4f} s / it)'.format( |
|
header, total_time_str, total_time / len(iterable))) |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
builtin_print = builtins.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop('force', False) |
|
force = force or (get_world_size() > 8) |
|
if is_master or force: |
|
now = datetime.datetime.now().time() |
|
builtin_print('[{}] '.format(now), end='') |
|
builtin_print(*args, **kwargs) |
|
|
|
builtins.print = print |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def init_distributed_mode(args): |
|
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ['WORLD_SIZE']) |
|
args.gpu = int(os.environ['LOCAL_RANK']) |
|
args.dist_url = 'env://' |
|
os.environ['LOCAL_SIZE'] = str(torch.cuda.device_count()) |
|
elif 'SLURM_PROCID' in os.environ: |
|
proc_id = int(os.environ['SLURM_PROCID']) |
|
ntasks = int(os.environ['SLURM_NTASKS']) |
|
node_list = os.environ['SLURM_NODELIST'] |
|
num_gpus = torch.cuda.device_count() |
|
addr = subprocess.getoutput( |
|
'scontrol show hostname {} | head -n1'.format(node_list)) |
|
os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', '29200') |
|
os.environ['MASTER_ADDR'] = addr |
|
os.environ['WORLD_SIZE'] = str(ntasks) |
|
os.environ['RANK'] = str(proc_id) |
|
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) |
|
os.environ['LOCAL_SIZE'] = str(num_gpus) |
|
args.dist_url = 'env://' |
|
args.world_size = ntasks |
|
args.rank = proc_id |
|
args.gpu = proc_id % num_gpus |
|
else: |
|
print('Not using distributed mode') |
|
args.distributed = False |
|
return |
|
|
|
args.distributed = True |
|
|
|
torch.cuda.set_device(args.gpu) |
|
args.dist_backend = 'nccl' |
|
print('| distributed init (rank {}): {}'.format( |
|
args.rank, args.dist_url), flush=True) |
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank) |
|
torch.distributed.barrier() |
|
setup_for_distributed(args.rank == 0) |
|
|
|
def clip_grad_norm_( |
|
parameters, max_norm: float, norm_type: float = 2.0, |
|
error_if_nonfinite: bool = False, foreach: Optional[bool] = None) -> torch.Tensor: |
|
r"""Clips gradient norm of an iterable of parameters. |
|
|
|
The norm is computed over all gradients together, as if they were |
|
concatenated into a single vector. Gradients are modified in-place. |
|
|
|
Args: |
|
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a |
|
single Tensor that will have gradients normalized |
|
max_norm (float): max norm of the gradients |
|
norm_type (float): type of the used p-norm. Can be ``'inf'`` for |
|
infinity norm. |
|
error_if_nonfinite (bool): if True, an error is thrown if the total |
|
norm of the gradients from :attr:`parameters` is ``nan``, |
|
``inf``, or ``-inf``. Default: False (will switch to True in the future) |
|
foreach (bool): use the faster foreach-based implementation. |
|
If ``None``, use the foreach implementation for CUDA and CPU native tensors and silently |
|
fall back to the slow implementation for other device types. |
|
Default: ``None`` |
|
|
|
Returns: |
|
Total norm of the parameter gradients (viewed as a single vector). |
|
""" |
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
grads = [p.grad for p in parameters if p.grad is not None] |
|
|
|
max_norm = float(max_norm) |
|
norm_type = float(norm_type) |
|
if len(grads) == 0: |
|
return torch.tensor(0.) |
|
first_device = grads[0].device |
|
grouped_grads: Dict[Tuple[torch.device, torch.dtype], List[List[Tensor]]] \ |
|
= {(first_device, grads[0].dtype): [[g.detach() for g in grads]]} |
|
|
|
norms = [torch.norm(g) for g in grads] |
|
total_norm = torch.norm(torch.stack(norms)) |
|
|
|
clip_coef = max_norm / (total_norm + 1e-6) |
|
|
|
|
|
|
|
clip_coef_clamped = torch.clamp(clip_coef, max=1.0) |
|
for ((device, _), [grads]) in grouped_grads.items(): |
|
if (foreach is None or foreach): |
|
torch._foreach_mul_(grads, clip_coef_clamped.to(device)) |
|
elif foreach: |
|
raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors') |
|
else: |
|
clip_coef_clamped_device = clip_coef_clamped.to(device) |
|
for g in grads: |
|
g.detach().mul_(clip_coef_clamped_device) |
|
|
|
return total_norm |
|
|
|
|
|
class NativeScalerWithGradNormCount: |
|
state_dict_key = "amp_scaler" |
|
|
|
def __init__(self): |
|
self._scaler = torch.cuda.amp.GradScaler() |
|
|
|
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): |
|
|
|
self._scaler.scale(loss).backward(create_graph=create_graph) |
|
if update_grad: |
|
if clip_grad is not None: |
|
assert parameters is not None |
|
self._scaler.unscale_(optimizer) |
|
norm = clip_grad_norm_(parameters, clip_grad) |
|
else: |
|
self._scaler.unscale_(optimizer) |
|
norm = get_grad_norm_(parameters) |
|
self._scaler.step(optimizer) |
|
self._scaler.update() |
|
else: |
|
norm = None |
|
return norm |
|
|
|
def state_dict(self): |
|
return self._scaler.state_dict() |
|
|
|
def load_state_dict(self, state_dict): |
|
self._scaler.load_state_dict(state_dict) |
|
|
|
|
|
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: |
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
parameters = [p for p in parameters if p.grad is not None] |
|
norm_type = float(norm_type) |
|
if len(parameters) == 0: |
|
return torch.tensor(0.) |
|
device = parameters[0].grad.device |
|
if norm_type == inf: |
|
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) |
|
else: |
|
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) |
|
return total_norm |
|
|
|
|
|
def save_model(args, epoch, model, model_without_ddp, optimizer): |
|
output_dir = Path(args.output_dir) |
|
epoch_name = str(epoch) |
|
|
|
|
|
checkpoint_paths = [output_dir / 'checkpoint.pth'] |
|
for checkpoint_path in checkpoint_paths: |
|
to_save = { |
|
'model': model_without_ddp.state_dict(), |
|
'optimizer': optimizer.state_dict(), |
|
'epoch': epoch, |
|
'args': args, |
|
} |
|
|
|
save_on_master(to_save, checkpoint_path) |
|
|
|
def load_model(args, model_without_ddp, optimizer): |
|
if args.resume: |
|
if args.resume.startswith('https'): |
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
args.resume, map_location='cpu', check_hash=True) |
|
else: |
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
model_without_ddp.load_state_dict(checkpoint['model']) |
|
print("Resume checkpoint %s" % args.resume) |
|
if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval): |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
args.start_epoch = checkpoint['epoch'] + 1 |
|
print("With optim & sched!") |
|
|
|
def auto_load_model(args, model, model_without_ddp, optimizer): |
|
output_dir = Path(args.output_dir) |
|
|
|
|
|
if args.auto_resume and len(args.resume) == 0: |
|
import glob |
|
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) |
|
latest_ckpt = -1 |
|
for ckpt in all_checkpoints: |
|
t = ckpt.split('-')[-1].split('.')[0] |
|
if t.isdigit(): |
|
latest_ckpt = max(int(t), latest_ckpt) |
|
if latest_ckpt >= 0: |
|
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) |
|
print("Auto resume checkpoint: %s" % args.resume) |
|
|
|
if args.resume: |
|
if args.resume.startswith('https'): |
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
args.resume, map_location='cpu', check_hash=True) |
|
else: |
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
model_without_ddp.load_state_dict(checkpoint['model']) |
|
print("Resume checkpoint %s" % args.resume) |
|
if 'optimizer' in checkpoint and 'epoch' in checkpoint: |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
args.start_epoch = checkpoint['epoch'] + 1 |
|
print("With optim & sched!") |
|
|
|
|
|
def all_reduce_mean(x): |
|
world_size = get_world_size() |
|
if world_size > 1: |
|
x_reduce = torch.tensor(x).cuda() |
|
dist.all_reduce(x_reduce) |
|
x_reduce /= world_size |
|
return x_reduce.item() |
|
else: |
|
return x |
|
|
|
|
|
def create_ds_config(args): |
|
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json") |
|
with open(args.deepspeed_config, mode="w") as writer: |
|
ds_config = { |
|
"train_batch_size": args.batch_size * args.accum_iter * get_world_size(), |
|
"train_micro_batch_size_per_gpu": args.batch_size, |
|
"steps_per_print": 1000, |
|
"optimizer": { |
|
"type": "Adam", |
|
"adam_w_mode": True, |
|
"params": { |
|
"lr": args.lr, |
|
"weight_decay": args.weight_decay, |
|
"bias_correction": True, |
|
"betas": [ |
|
args.opt_betas[0], |
|
args.opt_betas[1] |
|
], |
|
"eps": args.opt_eps |
|
} |
|
}, |
|
"fp16": { |
|
"enabled": True, |
|
"loss_scale": 0, |
|
"initial_scale_power": 16, |
|
"loss_scale_window": 1000, |
|
"hysteresis": 2, |
|
"min_loss_scale": 1 |
|
}, |
|
|
|
|
|
|
|
"amp": { |
|
"enabled": False, |
|
"opt_level": "O2" |
|
}, |
|
"flops_profiler": { |
|
"enabled": True, |
|
"profile_step": -1, |
|
"module_depth": -1, |
|
"top_modules": 1, |
|
"detailed": True, |
|
}, |
|
} |
|
|
|
if args.clip_grad is not None: |
|
ds_config.update({'gradient_clipping': args.clip_grad}) |
|
|
|
if args.zero_stage == 1: |
|
ds_config.update({"zero_optimization": {"stage": args.zero_stage, "reduce_bucket_size": 5e8}}) |
|
elif args.zero_stage > 1: |
|
raise NotImplementedError() |
|
|
|
writer.write(json.dumps(ds_config, indent=2)) |
|
|
|
def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None): |
|
parameter_group_names = {} |
|
parameter_group_vars = {} |
|
|
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: |
|
group_name = "no_decay" |
|
this_weight_decay = 0. |
|
else: |
|
group_name = "decay" |
|
this_weight_decay = weight_decay |
|
if get_num_layer is not None: |
|
layer_id = get_num_layer(name) |
|
group_name = "layer_%d_%s" % (layer_id, group_name) |
|
else: |
|
layer_id = None |
|
|
|
if group_name not in parameter_group_names: |
|
if get_layer_scale is not None: |
|
scale = get_layer_scale(layer_id) |
|
else: |
|
scale = 1. |
|
|
|
parameter_group_names[group_name] = { |
|
"weight_decay": this_weight_decay, |
|
"params": [], |
|
"lr_scale": scale |
|
} |
|
parameter_group_vars[group_name] = { |
|
"weight_decay": this_weight_decay, |
|
"params": [], |
|
"lr_scale": scale |
|
} |
|
|
|
parameter_group_vars[group_name]["params"].append(param) |
|
parameter_group_names[group_name]["params"].append(name) |
|
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) |
|
return list(parameter_group_vars.values()) |
|
|
|
|