|
|
|
|
|
|
|
|
|
import sys
|
|
import cv2
|
|
import math
|
|
import torch
|
|
import random
|
|
import numpy as np
|
|
from scipy import fft
|
|
from pathlib import Path
|
|
from einops import rearrange
|
|
from skimage import img_as_ubyte, img_as_float32
|
|
|
|
|
|
def ssim(img1, img2):
|
|
C1 = (0.01 * 255)**2
|
|
C2 = (0.03 * 255)**2
|
|
|
|
img1 = img1.astype(np.float64)
|
|
img2 = img2.astype(np.float64)
|
|
kernel = cv2.getGaussianKernel(11, 1.5)
|
|
window = np.outer(kernel, kernel.transpose())
|
|
|
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
|
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
|
mu1_sq = mu1**2
|
|
mu2_sq = mu2**2
|
|
mu1_mu2 = mu1 * mu2
|
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
|
(sigma1_sq + sigma2_sq + C2))
|
|
return ssim_map.mean()
|
|
|
|
def calculate_ssim(im1, im2, border=0, ycbcr=False):
|
|
'''
|
|
SSIM the same outputs as MATLAB's
|
|
im1, im2: h x w x , [0, 255], uint8
|
|
'''
|
|
if not im1.shape == im2.shape:
|
|
raise ValueError('Input images must have the same dimensions.')
|
|
|
|
if ycbcr:
|
|
im1 = rgb2ycbcr(im1, True)
|
|
im2 = rgb2ycbcr(im2, True)
|
|
|
|
h, w = im1.shape[:2]
|
|
im1 = im1[border:h-border, border:w-border]
|
|
im2 = im2[border:h-border, border:w-border]
|
|
|
|
if im1.ndim == 2:
|
|
return ssim(im1, im2)
|
|
elif im1.ndim == 3:
|
|
if im1.shape[2] == 3:
|
|
ssims = []
|
|
for i in range(3):
|
|
ssims.append(ssim(im1[:,:,i], im2[:,:,i]))
|
|
return np.array(ssims).mean()
|
|
elif im1.shape[2] == 1:
|
|
return ssim(np.squeeze(im1), np.squeeze(im2))
|
|
else:
|
|
raise ValueError('Wrong input image dimensions.')
|
|
|
|
def calculate_psnr(im1, im2, border=0, ycbcr=False):
|
|
'''
|
|
PSNR metric.
|
|
im1, im2: h x w x , [0, 255], uint8
|
|
'''
|
|
if not im1.shape == im2.shape:
|
|
raise ValueError('Input images must have the same dimensions.')
|
|
|
|
if ycbcr:
|
|
im1 = rgb2ycbcr(im1, True)
|
|
im2 = rgb2ycbcr(im2, True)
|
|
|
|
h, w = im1.shape[:2]
|
|
im1 = im1[border:h-border, border:w-border]
|
|
im2 = im2[border:h-border, border:w-border]
|
|
|
|
im1 = im1.astype(np.float64)
|
|
im2 = im2.astype(np.float64)
|
|
mse = np.mean((im1 - im2)**2)
|
|
if mse == 0:
|
|
return float('inf')
|
|
return 20 * math.log10(255.0 / math.sqrt(mse))
|
|
|
|
def batch_PSNR(img, imclean, border=0, ycbcr=False):
|
|
if ycbcr:
|
|
img = rgb2ycbcrTorch(img, True)
|
|
imclean = rgb2ycbcrTorch(imclean, True)
|
|
Img = img.data.cpu().numpy()
|
|
Iclean = imclean.data.cpu().numpy()
|
|
Img = img_as_ubyte(Img)
|
|
Iclean = img_as_ubyte(Iclean)
|
|
PSNR = 0
|
|
h, w = Iclean.shape[2:]
|
|
for i in range(Img.shape[0]):
|
|
PSNR += calculate_psnr(Iclean[i,:,].transpose((1,2,0)), Img[i,:,].transpose((1,2,0)), border)
|
|
return PSNR
|
|
|
|
def batch_SSIM(img, imclean, border=0, ycbcr=False):
|
|
if ycbcr:
|
|
img = rgb2ycbcrTorch(img, True)
|
|
imclean = rgb2ycbcrTorch(imclean, True)
|
|
Img = img.data.cpu().numpy()
|
|
Iclean = imclean.data.cpu().numpy()
|
|
Img = img_as_ubyte(Img)
|
|
Iclean = img_as_ubyte(Iclean)
|
|
SSIM = 0
|
|
for i in range(Img.shape[0]):
|
|
SSIM += calculate_ssim(Iclean[i,:,].transpose((1,2,0)), Img[i,:,].transpose((1,2,0)), border)
|
|
return SSIM
|
|
|
|
def normalize_np(im, mean=0.5, std=0.5, reverse=False):
|
|
'''
|
|
Input:
|
|
im: h x w x c, numpy array
|
|
Normalize: (im - mean) / std
|
|
Reverse: im * std + mean
|
|
|
|
'''
|
|
if not isinstance(mean, (list, tuple)):
|
|
mean = [mean, ] * im.shape[2]
|
|
mean = np.array(mean).reshape([1, 1, im.shape[2]])
|
|
|
|
if not isinstance(std, (list, tuple)):
|
|
std = [std, ] * im.shape[2]
|
|
std = np.array(std).reshape([1, 1, im.shape[2]])
|
|
|
|
if not reverse:
|
|
out = (im.astype(np.float32) - mean) / std
|
|
else:
|
|
out = im.astype(np.float32) * std + mean
|
|
return out
|
|
|
|
def normalize_th(im, mean=0.5, std=0.5, reverse=False):
|
|
'''
|
|
Input:
|
|
im: b x c x h x w, torch tensor
|
|
Normalize: (im - mean) / std
|
|
Reverse: im * std + mean
|
|
|
|
'''
|
|
if not isinstance(mean, (list, tuple)):
|
|
mean = [mean, ] * im.shape[1]
|
|
mean = torch.tensor(mean, device=im.device).view([1, im.shape[1], 1, 1])
|
|
|
|
if not isinstance(std, (list, tuple)):
|
|
std = [std, ] * im.shape[1]
|
|
std = torch.tensor(std, device=im.device).view([1, im.shape[1], 1, 1])
|
|
|
|
if not reverse:
|
|
out = (im - mean) / std
|
|
else:
|
|
out = im * std + mean
|
|
return out
|
|
|
|
|
|
def rgb2ycbcr(im, only_y=True):
|
|
'''
|
|
same as matlab rgb2ycbcr
|
|
Input:
|
|
im: uint8 [0,255] or float [0,1]
|
|
only_y: only return Y channel
|
|
'''
|
|
|
|
if im.dtype == np.uint8:
|
|
im_temp = im.astype(np.float64)
|
|
else:
|
|
im_temp = (im * 255).astype(np.float64)
|
|
|
|
|
|
if only_y:
|
|
rlt = np.dot(im_temp, np.array([65.481, 128.553, 24.966])/ 255.0) + 16.0
|
|
else:
|
|
rlt = np.matmul(im_temp, np.array([[65.481, -37.797, 112.0 ],
|
|
[128.553, -74.203, -93.786],
|
|
[24.966, 112.0, -18.214]])/255.0) + [16, 128, 128]
|
|
if im.dtype == np.uint8:
|
|
rlt = rlt.round()
|
|
else:
|
|
rlt /= 255.
|
|
return rlt.astype(im.dtype)
|
|
|
|
def rgb2ycbcrTorch(im, only_y=True):
|
|
'''
|
|
same as matlab rgb2ycbcr
|
|
Input:
|
|
im: float [0,1], N x 3 x H x W
|
|
only_y: only return Y channel
|
|
'''
|
|
|
|
im_temp = im.permute([0,2,3,1]) * 255.0
|
|
|
|
if only_y:
|
|
rlt = torch.matmul(im_temp, torch.tensor([65.481, 128.553, 24.966],
|
|
device=im.device, dtype=im.dtype).view([3,1])/ 255.0) + 16.0
|
|
else:
|
|
rlt = torch.matmul(im_temp, torch.tensor([[65.481, -37.797, 112.0 ],
|
|
[128.553, -74.203, -93.786],
|
|
[24.966, 112.0, -18.214]],
|
|
device=im.device, dtype=im.dtype)/255.0) + \
|
|
torch.tensor([16, 128, 128]).view([-1, 1, 1, 3])
|
|
rlt /= 255.0
|
|
rlt.clamp_(0.0, 1.0)
|
|
return rlt.permute([0, 3, 1, 2])
|
|
|
|
def bgr2rgb(im): return cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
|
|
|
def rgb2bgr(im): return cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
|
|
|
|
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
|
|
"""Convert torch Tensors into image numpy arrays.
|
|
|
|
After clamping to [min, max], values will be normalized to [0, 1].
|
|
|
|
Args:
|
|
tensor (Tensor or list[Tensor]): Accept shapes:
|
|
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
|
|
2) 3D Tensor of shape (3/1 x H x W);
|
|
3) 2D Tensor of shape (H x W).
|
|
Tensor channel should be in RGB order.
|
|
rgb2bgr (bool): Whether to change rgb to bgr.
|
|
out_type (numpy type): output types. If ``np.uint8``, transform outputs
|
|
to uint8 type with range [0, 255]; otherwise, float type with
|
|
range [0, 1]. Default: ``np.uint8``.
|
|
min_max (tuple[int]): min and max values for clamp.
|
|
|
|
Returns:
|
|
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
|
|
shape (H x W). The channel order is BGR.
|
|
"""
|
|
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
|
|
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
|
|
|
|
flag_tensor = torch.is_tensor(tensor)
|
|
if flag_tensor:
|
|
tensor = [tensor]
|
|
result = []
|
|
for _tensor in tensor:
|
|
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
|
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
|
|
|
|
n_dim = _tensor.dim()
|
|
if n_dim == 4:
|
|
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
|
|
img_np = img_np.transpose(1, 2, 0)
|
|
if rgb2bgr:
|
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
|
elif n_dim == 3:
|
|
img_np = _tensor.numpy()
|
|
img_np = img_np.transpose(1, 2, 0)
|
|
if img_np.shape[2] == 1:
|
|
img_np = np.squeeze(img_np, axis=2)
|
|
else:
|
|
if rgb2bgr:
|
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
|
elif n_dim == 2:
|
|
img_np = _tensor.numpy()
|
|
else:
|
|
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
|
|
if out_type == np.uint8:
|
|
|
|
img_np = (img_np * 255.0).round()
|
|
img_np = img_np.astype(out_type)
|
|
result.append(img_np)
|
|
if len(result) == 1 and flag_tensor:
|
|
result = result[0]
|
|
return result
|
|
|
|
def img2tensor(imgs, out_type=torch.float32):
|
|
"""Convert image numpy arrays into torch tensor.
|
|
Args:
|
|
imgs (Array or list[array]): Accept shapes:
|
|
3) list of numpy arrays
|
|
1) 3D numpy array of shape (H x W x 3/1);
|
|
2) 2D Tensor of shape (H x W).
|
|
Tensor channel should be in RGB order.
|
|
|
|
Returns:
|
|
(array or list): 4D ndarray of shape (1 x C x H x W)
|
|
"""
|
|
|
|
def _img2tensor(img):
|
|
if img.ndim == 2:
|
|
tensor = torch.from_numpy(img[None, None,]).type(out_type)
|
|
elif img.ndim == 3:
|
|
tensor = torch.from_numpy(rearrange(img, 'h w c -> c h w')).type(out_type).unsqueeze(0)
|
|
else:
|
|
raise TypeError(f'2D or 3D numpy array expected, got{img.ndim}D array')
|
|
return tensor
|
|
|
|
if not (isinstance(imgs, np.ndarray) or (isinstance(imgs, list) and all(isinstance(t, np.ndarray) for t in imgs))):
|
|
raise TypeError(f'Numpy array or list of numpy array expected, got {type(imgs)}')
|
|
|
|
flag_numpy = isinstance(imgs, np.ndarray)
|
|
if flag_numpy:
|
|
imgs = [imgs,]
|
|
result = []
|
|
for _img in imgs:
|
|
result.append(_img2tensor(_img))
|
|
|
|
if len(result) == 1 and flag_numpy:
|
|
result = result[0]
|
|
return result
|
|
|
|
|
|
def imresize_np(img, scale, antialiasing=True):
|
|
|
|
|
|
|
|
img = torch.from_numpy(img)
|
|
need_squeeze = True if img.dim() == 2 else False
|
|
if need_squeeze:
|
|
img.unsqueeze_(2)
|
|
|
|
in_H, in_W, in_C = img.size()
|
|
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
|
kernel_width = 4
|
|
kernel = 'cubic'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
|
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
|
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
|
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
|
|
|
|
|
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
|
|
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
|
|
|
|
sym_patch = img[:sym_len_Hs, :, :]
|
|
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
|
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
|
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
|
|
|
|
sym_patch = img[-sym_len_He:, :, :]
|
|
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
|
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
|
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
|
|
|
out_1 = torch.FloatTensor(out_H, in_W, in_C)
|
|
kernel_width = weights_H.size(1)
|
|
for i in range(out_H):
|
|
idx = int(indices_H[i][0])
|
|
for j in range(out_C):
|
|
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
|
|
|
|
|
|
|
|
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
|
|
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
|
|
|
|
sym_patch = out_1[:, :sym_len_Ws, :]
|
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
|
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
|
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
|
|
|
|
sym_patch = out_1[:, -sym_len_We:, :]
|
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
|
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
|
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
|
|
|
out_2 = torch.FloatTensor(out_H, out_W, in_C)
|
|
kernel_width = weights_W.size(1)
|
|
for i in range(out_W):
|
|
idx = int(indices_W[i][0])
|
|
for j in range(out_C):
|
|
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
|
|
if need_squeeze:
|
|
out_2.squeeze_()
|
|
|
|
return out_2.numpy()
|
|
|
|
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
|
if (scale < 1) and (antialiasing):
|
|
|
|
kernel_width = kernel_width / scale
|
|
|
|
|
|
x = torch.linspace(1, out_length, out_length)
|
|
|
|
|
|
|
|
|
|
u = x / scale + 0.5 * (1 - 1 / scale)
|
|
|
|
|
|
left = torch.floor(u - kernel_width / 2)
|
|
|
|
|
|
|
|
|
|
|
|
P = math.ceil(kernel_width) + 2
|
|
|
|
|
|
|
|
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
|
|
1, P).expand(out_length, P)
|
|
|
|
|
|
|
|
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
|
|
|
|
if (scale < 1) and (antialiasing):
|
|
weights = scale * cubic(distance_to_center * scale)
|
|
else:
|
|
weights = cubic(distance_to_center)
|
|
|
|
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
|
weights = weights / weights_sum.expand(out_length, P)
|
|
|
|
|
|
weights_zero_tmp = torch.sum((weights == 0), 0)
|
|
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
|
indices = indices.narrow(1, 1, P - 2)
|
|
weights = weights.narrow(1, 1, P - 2)
|
|
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
|
indices = indices.narrow(1, 0, P - 2)
|
|
weights = weights.narrow(1, 0, P - 2)
|
|
weights = weights.contiguous()
|
|
indices = indices.contiguous()
|
|
sym_len_s = -indices.min() + 1
|
|
sym_len_e = indices.max() - in_length
|
|
indices = indices + sym_len_s - 1
|
|
return weights, indices, int(sym_len_s), int(sym_len_e)
|
|
|
|
|
|
def cubic(x):
|
|
absx = torch.abs(x)
|
|
absx2 = absx**2
|
|
absx3 = absx**3
|
|
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
|
|
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
|
|
|
|
|
|
def imread(path, chn='rgb', dtype='float32'):
|
|
'''
|
|
Read image.
|
|
chn: 'rgb', 'bgr' or 'gray'
|
|
out:
|
|
im: h x w x c, numpy tensor
|
|
'''
|
|
im = cv2.imread(str(path), cv2.IMREAD_UNCHANGED)
|
|
try:
|
|
if chn.lower() == 'rgb':
|
|
if im.ndim == 3:
|
|
im = bgr2rgb(im)
|
|
else:
|
|
im = np.stack((im, im, im), axis=2)
|
|
elif chn.lower() == 'gray':
|
|
assert im.ndim == 2
|
|
except:
|
|
print(str(path))
|
|
|
|
if dtype == 'float32':
|
|
im = im.astype(np.float32) / 255.
|
|
elif dtype == 'float64':
|
|
im = im.astype(np.float64) / 255.
|
|
elif dtype == 'uint8':
|
|
pass
|
|
else:
|
|
sys.exit('Please input corrected dtype: float32, float64 or uint8!')
|
|
|
|
return im
|
|
|
|
def imwrite(im_in, path, chn='rgb', dtype_in='float32', qf=None):
|
|
'''
|
|
Save image.
|
|
Input:
|
|
im: h x w x c, numpy tensor
|
|
path: the saving path
|
|
chn: the channel order of the im,
|
|
'''
|
|
im = im_in.copy()
|
|
if isinstance(path, str):
|
|
path = Path(path)
|
|
if dtype_in != 'uint8':
|
|
im = img_as_ubyte(im)
|
|
|
|
if chn.lower() == 'rgb' and im.ndim == 3:
|
|
im = rgb2bgr(im)
|
|
|
|
if qf is not None and path.suffix.lower() in ['.jpg', '.jpeg']:
|
|
flag = cv2.imwrite(str(path), im, [int(cv2.IMWRITE_JPEG_QUALITY), int(qf)])
|
|
else:
|
|
flag = cv2.imwrite(str(path), im)
|
|
|
|
return flag
|
|
|
|
def jpeg_compress(im, qf, chn_in='rgb'):
|
|
'''
|
|
Input:
|
|
im: h x w x 3 array
|
|
qf: compress factor, (0, 100]
|
|
chn_in: 'rgb' or 'bgr'
|
|
Return:
|
|
Compressed Image with channel order: chn_in
|
|
'''
|
|
|
|
im_bgr = rgb2bgr(im) if chn_in.lower() == 'rgb' else im
|
|
if im.dtype != np.dtype('uint8'): im_bgr = img_as_ubyte(im_bgr)
|
|
|
|
|
|
flag, encimg = cv2.imencode('.jpg', im_bgr, [int(cv2.IMWRITE_JPEG_QUALITY), qf])
|
|
assert flag
|
|
im_jpg_bgr = cv2.imdecode(encimg, 1)
|
|
|
|
|
|
im_out = bgr2rgb(im_jpg_bgr) if chn_in.lower() == 'rgb' else im_jpg_bgr
|
|
if im.dtype != np.dtype('uint8'): im_out = img_as_float32(im_out).astype(im.dtype)
|
|
return im_out
|
|
|
|
|
|
def data_aug_np(image, mode):
|
|
'''
|
|
Performs data augmentation of the input image
|
|
Input:
|
|
image: a cv2 (OpenCV) image
|
|
mode: int. Choice of transformation to apply to the image
|
|
0 - no transformation
|
|
1 - flip up and down
|
|
2 - rotate counterwise 90 degree
|
|
3 - rotate 90 degree and flip up and down
|
|
4 - rotate 180 degree
|
|
5 - rotate 180 degree and flip
|
|
6 - rotate 270 degree
|
|
7 - rotate 270 degree and flip
|
|
'''
|
|
if mode == 0:
|
|
|
|
out = image
|
|
elif mode == 1:
|
|
|
|
out = np.flipud(image)
|
|
elif mode == 2:
|
|
|
|
out = np.rot90(image)
|
|
elif mode == 3:
|
|
|
|
out = np.rot90(image)
|
|
out = np.flipud(out)
|
|
elif mode == 4:
|
|
|
|
out = np.rot90(image, k=2)
|
|
elif mode == 5:
|
|
|
|
out = np.rot90(image, k=2)
|
|
out = np.flipud(out)
|
|
elif mode == 6:
|
|
|
|
out = np.rot90(image, k=3)
|
|
elif mode == 7:
|
|
|
|
out = np.rot90(image, k=3)
|
|
out = np.flipud(out)
|
|
else:
|
|
raise Exception('Invalid choice of image transformation')
|
|
|
|
return out.copy()
|
|
|
|
def inverse_data_aug_np(image, mode):
|
|
'''
|
|
Performs inverse data augmentation of the input image
|
|
'''
|
|
if mode == 0:
|
|
|
|
out = image
|
|
elif mode == 1:
|
|
out = np.flipud(image)
|
|
elif mode == 2:
|
|
out = np.rot90(image, axes=(1,0))
|
|
elif mode == 3:
|
|
out = np.flipud(image)
|
|
out = np.rot90(out, axes=(1,0))
|
|
elif mode == 4:
|
|
out = np.rot90(image, k=2, axes=(1,0))
|
|
elif mode == 5:
|
|
out = np.flipud(image)
|
|
out = np.rot90(out, k=2, axes=(1,0))
|
|
elif mode == 6:
|
|
out = np.rot90(image, k=3, axes=(1,0))
|
|
elif mode == 7:
|
|
|
|
out = np.flipud(image)
|
|
out = np.rot90(out, k=3, axes=(1,0))
|
|
else:
|
|
raise Exception('Invalid choice of image transformation')
|
|
|
|
return out
|
|
|
|
class SpatialAug:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __call__(self, im, flag=None):
|
|
if flag is None:
|
|
flag = random.randint(0, 7)
|
|
|
|
out = data_aug_np(im, flag)
|
|
return out
|
|
|
|
|
|
def imshow(x, title=None, cbar=False):
|
|
import matplotlib.pyplot as plt
|
|
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
|
|
if title:
|
|
plt.title(title)
|
|
if cbar:
|
|
plt.colorbar()
|
|
plt.show()
|
|
|
|
|
|
def imgrad(im, pading_mode='mirror'):
|
|
'''
|
|
Calculate image gradient.
|
|
Input:
|
|
im: h x w x c numpy array
|
|
'''
|
|
from scipy.ndimage import correlate
|
|
wx = np.array([[0, 0, 0],
|
|
[-1, 1, 0],
|
|
[0, 0, 0]], dtype=np.float32)
|
|
wy = np.array([[0, -1, 0],
|
|
[0, 1, 0],
|
|
[0, 0, 0]], dtype=np.float32)
|
|
if im.ndim == 3:
|
|
gradx = np.stack(
|
|
[correlate(im[:,:,c], wx, mode=pading_mode) for c in range(im.shape[2])],
|
|
axis=2
|
|
)
|
|
grady = np.stack(
|
|
[correlate(im[:,:,c], wy, mode=pading_mode) for c in range(im.shape[2])],
|
|
axis=2
|
|
)
|
|
grad = np.concatenate((gradx, grady), axis=2)
|
|
else:
|
|
gradx = correlate(im, wx, mode=pading_mode)
|
|
grady = correlate(im, wy, mode=pading_mode)
|
|
grad = np.stack((gradx, grady), axis=2)
|
|
|
|
return {'gradx': gradx, 'grady': grady, 'grad':grad}
|
|
|
|
def imgrad_fft(im):
|
|
'''
|
|
Calculate image gradient.
|
|
Input:
|
|
im: h x w x c numpy array
|
|
'''
|
|
wx = np.rot90(np.array([[0, 0, 0],
|
|
[-1, 1, 0],
|
|
[0, 0, 0]], dtype=np.float32), k=2)
|
|
gradx = convfft(im, wx)
|
|
wy = np.rot90(np.array([[0, -1, 0],
|
|
[0, 1, 0],
|
|
[0, 0, 0]], dtype=np.float32), k=2)
|
|
grady = convfft(im, wy)
|
|
grad = np.concatenate((gradx, grady), axis=2)
|
|
|
|
return {'gradx': gradx, 'grady': grady, 'grad':grad}
|
|
|
|
def convfft(im, weight):
|
|
'''
|
|
Convolution with FFT
|
|
Input:
|
|
im: h1 x w1 x c numpy array
|
|
weight: h2 x w2 numpy array
|
|
Output:
|
|
out: h1 x w1 x c numpy array
|
|
'''
|
|
axes = (0,1)
|
|
otf = psf2otf(weight, im.shape[:2])
|
|
if im.ndim == 3:
|
|
otf = np.tile(otf[:, :, None], (1,1,im.shape[2]))
|
|
out = fft.ifft2(fft.fft2(im, axes=axes) * otf, axes=axes).real
|
|
return out
|
|
|
|
def psf2otf(psf, shape):
|
|
"""
|
|
MATLAB psf2otf function.
|
|
Borrowed from https://github.com/aboucaud/pypher/blob/master/pypher/pypher.py.
|
|
Input:
|
|
psf : h x w numpy array
|
|
shape : list or tuple, output shape of the OTF array
|
|
Output:
|
|
otf : OTF array with the desirable shape
|
|
"""
|
|
if np.all(psf == 0):
|
|
return np.zeros_like(psf)
|
|
|
|
inshape = psf.shape
|
|
|
|
psf = zero_pad(psf, shape, position='corner')
|
|
|
|
|
|
for axis, axis_size in enumerate(inshape):
|
|
psf = np.roll(psf, -int(axis_size / 2), axis=axis)
|
|
|
|
|
|
otf = fft.fft2(psf)
|
|
|
|
|
|
|
|
|
|
|
|
n_ops = np.sum(psf.size * np.log2(psf.shape))
|
|
otf = np.real_if_close(otf, tol=n_ops)
|
|
|
|
return otf
|
|
|
|
|
|
def random_crop(im, pch_size):
|
|
'''
|
|
Randomly crop a patch from the give image.
|
|
'''
|
|
h, w = im.shape[:2]
|
|
if h == pch_size and w == pch_size:
|
|
im_pch = im
|
|
else:
|
|
assert h >= pch_size or w >= pch_size
|
|
ind_h = random.randint(0, h-pch_size)
|
|
ind_w = random.randint(0, w-pch_size)
|
|
im_pch = im[ind_h:ind_h+pch_size, ind_w:ind_w+pch_size,]
|
|
|
|
return im_pch
|
|
|
|
class RandomCrop:
|
|
def __init__(self, pch_size):
|
|
self.pch_size = pch_size
|
|
|
|
def __call__(self, im):
|
|
return random_crop(im, self.pch_size)
|
|
|
|
class ImageSpliterNp:
|
|
def __init__(self, im, pch_size, stride, sf=1):
|
|
'''
|
|
Input:
|
|
im: h x w x c, numpy array, [0, 1], low-resolution image in SR
|
|
pch_size, stride: patch setting
|
|
sf: scale factor in image super-resolution
|
|
'''
|
|
assert stride <= pch_size
|
|
self.stride = stride
|
|
self.pch_size = pch_size
|
|
self.sf = sf
|
|
|
|
if im.ndim == 2:
|
|
im = im[:, :, None]
|
|
|
|
height, width, chn = im.shape
|
|
self.height_starts_list = self.extract_starts(height)
|
|
self.width_starts_list = self.extract_starts(width)
|
|
self.length = self.__len__()
|
|
self.num_pchs = 0
|
|
|
|
self.im_ori = im
|
|
self.im_res = np.zeros([height*sf, width*sf, chn], dtype=im.dtype)
|
|
self.pixel_count = np.zeros([height*sf, width*sf, chn], dtype=im.dtype)
|
|
|
|
def extract_starts(self, length):
|
|
starts = list(range(0, length, self.stride))
|
|
if starts[-1] + self.pch_size > length:
|
|
starts[-1] = length - self.pch_size
|
|
return starts
|
|
|
|
def __len__(self):
|
|
return len(self.height_starts_list) * len(self.width_starts_list)
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.num_pchs < self.length:
|
|
w_start_idx = self.num_pchs // len(self.height_starts_list)
|
|
w_start = self.width_starts_list[w_start_idx] * self.sf
|
|
w_end = w_start + self.pch_size * self.sf
|
|
|
|
h_start_idx = self.num_pchs % len(self.height_starts_list)
|
|
h_start = self.height_starts_list[h_start_idx] * self.sf
|
|
h_end = h_start + self.pch_size * self.sf
|
|
|
|
pch = self.im_ori[h_start:h_end, w_start:w_end,]
|
|
self.w_start, self.w_end = w_start, w_end
|
|
self.h_start, self.h_end = h_start, h_end
|
|
|
|
self.num_pchs += 1
|
|
else:
|
|
raise StopIteration(0)
|
|
|
|
return pch, (h_start, h_end, w_start, w_end)
|
|
|
|
def update(self, pch_res, index_infos):
|
|
'''
|
|
Input:
|
|
pch_res: pch_size x pch_size x 3, [0,1]
|
|
index_infos: (h_start, h_end, w_start, w_end)
|
|
'''
|
|
if index_infos is None:
|
|
w_start, w_end = self.w_start, self.w_end
|
|
h_start, h_end = self.h_start, self.h_end
|
|
else:
|
|
h_start, h_end, w_start, w_end = index_infos
|
|
|
|
self.im_res[h_start:h_end, w_start:w_end] += pch_res
|
|
self.pixel_count[h_start:h_end, w_start:w_end] += 1
|
|
|
|
def gather(self):
|
|
assert np.all(self.pixel_count != 0)
|
|
return self.im_res / self.pixel_count
|
|
|
|
class ImageSpliterTh:
|
|
def __init__(self, im, pch_size, stride, sf=1, extra_bs=1):
|
|
'''
|
|
Input:
|
|
im: n x c x h x w, torch tensor, float, low-resolution image in SR
|
|
pch_size, stride: patch setting
|
|
sf: scale factor in image super-resolution
|
|
pch_bs: aggregate pchs to processing, only used when inputing single image
|
|
'''
|
|
assert stride <= pch_size
|
|
self.stride = stride
|
|
self.pch_size = pch_size
|
|
self.sf = sf
|
|
self.extra_bs = extra_bs
|
|
|
|
bs, chn, height, width= im.shape
|
|
self.true_bs = bs
|
|
|
|
self.height_starts_list = self.extract_starts(height)
|
|
self.width_starts_list = self.extract_starts(width)
|
|
self.starts_list = []
|
|
for ii in self.height_starts_list:
|
|
for jj in self.width_starts_list:
|
|
self.starts_list.append([ii, jj])
|
|
|
|
self.length = self.__len__()
|
|
self.count_pchs = 0
|
|
|
|
self.im_ori = im
|
|
self.im_res = torch.zeros([bs, chn, height*sf, width*sf], dtype=im.dtype, device=im.device)
|
|
self.pixel_count = torch.zeros([bs, chn, height*sf, width*sf], dtype=im.dtype, device=im.device)
|
|
|
|
def extract_starts(self, length):
|
|
if length <= self.pch_size:
|
|
starts = [0,]
|
|
else:
|
|
starts = list(range(0, length, self.stride))
|
|
for ii in range(len(starts)):
|
|
if starts[ii] + self.pch_size > length:
|
|
starts[ii] = length - self.pch_size
|
|
starts = sorted(set(starts), key=starts.index)
|
|
return starts
|
|
|
|
def __len__(self):
|
|
return len(self.height_starts_list) * len(self.width_starts_list)
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.count_pchs < self.length:
|
|
index_infos = []
|
|
current_starts_list = self.starts_list[self.count_pchs:self.count_pchs+self.extra_bs]
|
|
for ii, (h_start, w_start) in enumerate(current_starts_list):
|
|
w_end = w_start + self.pch_size
|
|
h_end = h_start + self.pch_size
|
|
current_pch = self.im_ori[:, :, h_start:h_end, w_start:w_end]
|
|
if ii == 0:
|
|
pch = current_pch
|
|
else:
|
|
pch = torch.cat([pch, current_pch], dim=0)
|
|
|
|
h_start *= self.sf
|
|
h_end *= self.sf
|
|
w_start *= self.sf
|
|
w_end *= self.sf
|
|
index_infos.append([h_start, h_end, w_start, w_end])
|
|
|
|
self.count_pchs += len(current_starts_list)
|
|
else:
|
|
raise StopIteration()
|
|
|
|
return pch, index_infos
|
|
|
|
def update(self, pch_res, index_infos):
|
|
'''
|
|
Input:
|
|
pch_res: (n*extra_bs) x c x pch_size x pch_size, float
|
|
index_infos: [(h_start, h_end, w_start, w_end),]
|
|
'''
|
|
assert pch_res.shape[0] % self.true_bs == 0
|
|
pch_list = torch.split(pch_res, self.true_bs, dim=0)
|
|
assert len(pch_list) == len(index_infos)
|
|
for ii, (h_start, h_end, w_start, w_end) in enumerate(index_infos):
|
|
current_pch = pch_list[ii]
|
|
self.im_res[:, :, h_start:h_end, w_start:w_end] += current_pch
|
|
self.pixel_count[:, :, h_start:h_end, w_start:w_end] += 1
|
|
|
|
def gather(self):
|
|
assert torch.all(self.pixel_count != 0)
|
|
return self.im_res.div(self.pixel_count)
|
|
|
|
|
|
class Clamper:
|
|
def __init__(self, min_max=(-1, 1)):
|
|
self.min_bound, self.max_bound = min_max[0], min_max[1]
|
|
|
|
def __call__(self, im):
|
|
if isinstance(im, np.ndarray):
|
|
return np.clip(im, a_min=self.min_bound, a_max=self.max_bound)
|
|
elif isinstance(im, torch.Tensor):
|
|
return torch.clamp(im, min=self.min_bound, max=self.max_bound)
|
|
else:
|
|
raise TypeError(f'ndarray or Tensor expected, got {type(im)}')
|
|
|
|
if __name__ == '__main__':
|
|
im = np.random.randn(64, 64, 3).astype(np.float32)
|
|
|
|
grad1 = imgrad(im)['grad']
|
|
grad2 = imgrad_fft(im)['grad']
|
|
|
|
error = np.abs(grad1 -grad2).max()
|
|
mean_error = np.abs(grad1 -grad2).mean()
|
|
print('The largest error is {:.2e}'.format(error))
|
|
print('The mean error is {:.2e}'.format(mean_error)) |