|
import gradio as gr |
|
import os |
|
import sys |
|
import math |
|
from typing import List |
|
|
|
import numpy as np |
|
from PIL import Image |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
from src.my_utils.testing_utils import parse_args_paired_testing |
|
from src.de_net import DEResNet |
|
from src.s3diff_tile import S3Diff |
|
from torchvision import transforms |
|
from utils.wavelet_color import wavelet_color_fix, adain_color_fix |
|
|
|
tensor_transforms = transforms.Compose([ |
|
transforms.ToTensor(), |
|
]) |
|
|
|
args = parse_args_paired_testing() |
|
|
|
|
|
subprocess.run(["bash", "get_pretrained_models.sh"]) |
|
|
|
|
|
pretrained_model_path = 'checkpoints/s3diff.pkl' |
|
t2i_path = 'stabilityai/sd-turbo' |
|
de_net_path = 'assets/mm-realsr/de_net.pth' |
|
|
|
|
|
net_sr = S3Diff(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae, sd_path=t2i_path, pretrained_path=pretrained_model_path, args=args) |
|
net_sr.set_eval() |
|
|
|
|
|
net_de = DEResNet(num_in_ch=3, num_degradation=2) |
|
net_de.load_model(de_net_path) |
|
net_de = net_de.cuda() |
|
net_de.eval() |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
net_sr.unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
if args.gradient_checkpointing: |
|
net_sr.unet.enable_gradient_checkpointing() |
|
|
|
weight_dtype = torch.float32 |
|
device = "cuda" |
|
|
|
|
|
net_sr.to(device, dtype=weight_dtype) |
|
net_de.to(device, dtype=weight_dtype) |
|
|
|
@torch.no_grad() |
|
def process( |
|
input_image: Image.Image, |
|
scale_factor: float, |
|
cfg_scale: float, |
|
latent_tiled_size: int, |
|
latent_tiled_overlap: int, |
|
align_method: str, |
|
) -> List[np.ndarray]: |
|
|
|
|
|
|
|
|
|
net_sr._set_latent_tile(latent_tiled_size = latent_tiled_size, latent_tiled_overlap = latent_tiled_overlap) |
|
|
|
im_lr = tensor_transforms(input_image).unsqueeze(0).to(device) |
|
ori_h, ori_w = im_lr.shape[2:] |
|
im_lr_resize = F.interpolate( |
|
im_lr, |
|
size=(int(ori_h * scale_factor), |
|
int(ori_w * scale_factor)), |
|
mode='bicubic', |
|
) |
|
im_lr_resize = im_lr_resize.contiguous() |
|
im_lr_resize_norm = im_lr_resize * 2 - 1.0 |
|
im_lr_resize_norm = torch.clamp(im_lr_resize_norm, -1.0, 1.0) |
|
resize_h, resize_w = im_lr_resize_norm.shape[2:] |
|
|
|
pad_h = (math.ceil(resize_h / 64)) * 64 - resize_h |
|
pad_w = (math.ceil(resize_w / 64)) * 64 - resize_w |
|
im_lr_resize_norm = F.pad(im_lr_resize_norm, pad=(0, pad_w, 0, pad_h), mode='reflect') |
|
|
|
try: |
|
with torch.autocast("cuda"): |
|
deg_score = net_de(im_lr) |
|
|
|
pos_tag_prompt = [args.pos_prompt] |
|
neg_tag_prompt = [args.neg_prompt] |
|
|
|
x_tgt_pred = net_sr(im_lr_resize_norm, deg_score, pos_prompt=pos_tag_prompt, neg_prompt=neg_tag_prompt) |
|
x_tgt_pred = x_tgt_pred[:, :, :resize_h, :resize_w] |
|
out_img = (x_tgt_pred * 0.5 + 0.5).cpu().detach() |
|
|
|
output_pil = transforms.ToPILImage()(out_img[0]) |
|
|
|
if align_method == 'no fix': |
|
image = output_pil |
|
else: |
|
im_lr_resize = transforms.ToPILImage()(im_lr_resize[0]) |
|
if align_method == 'wavelet': |
|
image = wavelet_color_fix(output_pil, im_lr_resize) |
|
elif align_method == 'adain': |
|
image = adain_color_fix(output_pil, im_lr_resize) |
|
|
|
except Exception as e: |
|
print(e) |
|
image = Image.new(mode="RGB", size=(512, 512)) |
|
|
|
return image |
|
|
|
|
|
|
|
MARKDOWN = \ |
|
""" |
|
## Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors |
|
|
|
[GitHub](https://github.com/ArcticHare105/S3Diff) | [Paper](https://arxiv.org/abs/2409.17058) |
|
|
|
If S3Diff is helpful for you, please help star the GitHub Repo. Thanks! |
|
""" |
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown(MARKDOWN) |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(source="upload", type="pil") |
|
run_button = gr.Button(label="Run") |
|
with gr.Accordion("Options", open=True): |
|
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set a value larger than 1 to enable it!)", minimum=1.0, maximum=1.1, value=1.07, step=0.01) |
|
scale_factor = gr.Number(label="SR Scale", value=4) |
|
latent_tiled_size = gr.Slider(label="Tile Size", minimum=64, maximum=160, value=96, step=1) |
|
latent_tiled_overlap = gr.Slider(label="Tile Overlap", minimum=16, maximum=48, value=32, step=1) |
|
align_method = gr.Dropdown(label="Color Correction", choices=["wavelet", "adain", "no fix"], value="wavelet") |
|
with gr.Column(): |
|
result_image = gr.Image(label="Output", show_label=False, elem_id="result_image", source="canvas", width="100%", height="auto") |
|
|
|
inputs = [ |
|
input_image, |
|
scale_factor, |
|
cfg_scale, |
|
latent_tiled_size, |
|
latent_tiled_overlap, |
|
align_method |
|
] |
|
run_button.click(fn=process, inputs=inputs, outputs=[result_image]) |
|
|
|
block.launch() |
|
|
|
|