S3Diff / src /my_utils /training_utils.py
zhangap's picture
Upload 213 files
36d9761 verified
raw
history blame
24.1 kB
import argparse
import json
from PIL import Image
from torchvision import transforms
import torch.nn.functional as F
from glob import glob
import cv2
import math
import numpy as np
import os
import os.path as osp
import random
import time
import torch
from pathlib import Path
from torch.utils import data as data
from basicsr.utils import DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.data.transforms import paired_random_crop, triplet_random_crop
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt, random_add_speckle_noise_pt, random_add_saltpepper_noise_pt, bivariate_Gaussian
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
def parse_args_paired_training(input_args=None):
"""
Parses command-line arguments used for configuring an paired session (pix2pix-Turbo).
This function sets up an argument parser to handle various training options.
Returns:
argparse.Namespace: The parsed command-line arguments.
"""
parser = argparse.ArgumentParser()
# args for the loss function
parser.add_argument("--gan_disc_type", default="vagan")
parser.add_argument("--gan_loss_type", default="multilevel_sigmoid_s")
parser.add_argument("--lambda_gan", default=0.5, type=float)
parser.add_argument("--lambda_lpips", default=5.0, type=float)
parser.add_argument("--lambda_l2", default=2.0, type=float)
parser.add_argument("--base_config", default="./configs/sr.yaml", type=str)
# validation eval args
parser.add_argument("--eval_freq", default=100, type=int)
parser.add_argument("--save_val", default=True, action="store_false")
parser.add_argument("--num_samples_eval", type=int, default=100, help="Number of samples to use for all evaluation")
parser.add_argument("--viz_freq", type=int, default=100, help="Frequency of visualizing the outputs.")
# details about the model architecture
parser.add_argument("--sd_path")
parser.add_argument("--pretrained_path", type=str, default=None,)
parser.add_argument("--de_net_path")
parser.add_argument("--revision", type=str, default=None,)
parser.add_argument("--variant", type=str, default=None,)
parser.add_argument("--tokenizer_name", type=str, default=None)
parser.add_argument("--lora_rank_unet", default=32, type=int)
parser.add_argument("--lora_rank_vae", default=16, type=int)
parser.add_argument("--neg_prob", default=0.05, type=float)
parser.add_argument("--pos_prompt", type=str, default="A high-resolution, 8K, ultra-realistic image with sharp focus, vibrant colors, and natural lighting.")
parser.add_argument("--neg_prompt", type=str, default="oil painting, cartoon, blur, dirty, messy, low quality, deformation, low resolution, oversmooth")
# training details
parser.add_argument("--output_dir", required=True)
parser.add_argument("--cache_dir", default=None,)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--resolution", type=int, default=512,)
parser.add_argument("--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader.")
parser.add_argument("--num_training_epochs", type=int, default=50)
parser.add_argument("--max_train_steps", type=int, default=50000,)
parser.add_argument("--checkpointing_steps", type=int, default=500,)
parser.add_argument("--gradient_accumulation_steps", type=int, default=4, help="Number of updates steps to accumulate before performing a backward/update pass.",)
parser.add_argument("--gradient_checkpointing", action="store_true",)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--lr_scheduler", type=str, default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "piecewise_constant", "constant_with_warmup"]'
),
)
parser.add_argument("--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--lr_num_cycles", type=int, default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=0.1, help="Power factor of the polynomial scheduler.")
parser.add_argument("--dataloader_num_workers", type=int, default=0,)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--allow_tf32", action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument("--report_to", type=str, default="wandb",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"],)
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.")
parser.add_argument("--set_grads_to_none", action="store_true",)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
return args
# @DATASET_REGISTRY.register(suffix='basicsr')
class PairedDataset(data.Dataset):
"""Modified dataset based on the dataset used for Real-ESRGAN model:
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
It loads gt (Ground-Truth) images, and augments them.
It also generates blur kernels and sinc kernels for generating low-quality images.
Note that the low-quality images are processed in tensors on GPUS for faster processing.
Args:
opt (dict): Config for train datasets. It contains the following keys:
dataroot_gt (str): Data root path for gt.
meta_info (str): Path for meta information file.
io_backend (dict): IO backend type and other kwarg.
use_hflip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
Please see more options in the codes.
"""
def __init__(self, opt):
super(PairedDataset, self).__init__()
self.opt = opt
self.file_client = None
self.io_backend_opt = opt['io_backend']
if 'crop_size' in opt:
self.crop_size = opt['crop_size']
else:
self.crop_size = 512
if 'image_type' not in opt:
opt['image_type'] = 'png'
# support multiple type of data: file path and meta data, remove support of lmdb
self.paths = []
if 'meta_info' in opt:
with open(self.opt['meta_info']) as fin:
paths = [line.strip().split(' ')[0] for line in fin]
self.paths = [v for v in paths]
if 'meta_num' in opt:
self.paths = sorted(self.paths)[:opt['meta_num']]
if 'gt_path' in opt:
if isinstance(opt['gt_path'], str):
# Use rglob to recursively search for images
self.paths.extend(sorted([str(x) for x in Path(opt['gt_path']).rglob('*.' + opt['image_type'])]))
else:
for path in opt['gt_path']:
self.paths.extend(sorted([str(x) for x in Path(path).rglob('*.' + opt['image_type'])]))
# if 'gt_path' in opt:
# if isinstance(opt['gt_path'], str):
# self.paths.extend(sorted([str(x) for x in Path(opt['gt_path']).glob('*.'+opt['image_type'])]))
# else:
# self.paths.extend(sorted([str(x) for x in Path(opt['gt_path'][0]).glob('*.'+opt['image_type'])]))
# if len(opt['gt_path']) > 1:
# for i in range(len(opt['gt_path'])-1):
# self.paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]).glob('*.'+opt['image_type'])]))
if 'imagenet_path' in opt:
class_list = os.listdir(opt['imagenet_path'])
for class_file in class_list:
self.paths.extend(sorted([str(x) for x in Path(os.path.join(opt['imagenet_path'], class_file)).glob('*.'+'JPEG')]))
if 'face_gt_path' in opt:
if isinstance(opt['face_gt_path'], str):
face_list = sorted([str(x) for x in Path(opt['face_gt_path']).glob('*.'+opt['image_type'])])
self.paths.extend(face_list[:opt['num_face']])
else:
face_list = sorted([str(x) for x in Path(opt['face_gt_path'][0]).glob('*.'+opt['image_type'])])
self.paths.extend(face_list[:opt['num_face']])
if len(opt['face_gt_path']) > 1:
for i in range(len(opt['face_gt_path'])-1):
self.paths.extend(sorted([str(x) for x in Path(opt['face_gt_path'][0]).glob('*.'+opt['image_type'])])[:opt['num_face']])
# limit number of pictures for test
if 'num_pic' in opt:
if 'val' or 'test' in opt:
random.shuffle(self.paths)
self.paths = self.paths[:opt['num_pic']]
else:
self.paths = self.paths[:opt['num_pic']]
if 'mul_num' in opt:
self.paths = self.paths * opt['mul_num']
# print('>>>>>>>>>>>>>>>>>>>>>')
# print(self.paths)
# blur settings for the first degradation
self.blur_kernel_size = opt['blur_kernel_size']
self.kernel_list = opt['kernel_list']
self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability
self.blur_sigma = opt['blur_sigma']
self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels
self.betap_range = opt['betap_range'] # betap used in plateau blur kernels
self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters
# blur settings for the second degradation
self.blur_kernel_size2 = opt['blur_kernel_size2']
self.kernel_list2 = opt['kernel_list2']
self.kernel_prob2 = opt['kernel_prob2']
self.blur_sigma2 = opt['blur_sigma2']
self.betag_range2 = opt['betag_range2']
self.betap_range2 = opt['betap_range2']
self.sinc_prob2 = opt['sinc_prob2']
# a final sinc filter
self.final_sinc_prob = opt['final_sinc_prob']
self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
# TODO: kernel range is now hard-coded, should be in the configure file
self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
self.pulse_tensor[10, 10] = 1
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# -------------------------------- Load gt images -------------------------------- #
# Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
gt_path = self.paths[index]
# avoid errors caused by high latency in reading files
retry = 3
while retry > 0:
try:
img_bytes = self.file_client.get(gt_path, 'gt')
except (IOError, OSError) as e:
# logger = get_root_logger()
# logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}')
# change another file to read
index = random.randint(0, self.__len__()-1)
gt_path = self.paths[index]
time.sleep(1) # sleep 1s for occasional server congestion
else:
break
finally:
retry -= 1
img_gt = imfrombytes(img_bytes, float32=True)
# filter the dataset and remove images with too low quality
img_size = os.path.getsize(gt_path)
img_size = img_size / 1024
while img_gt.shape[0] * img_gt.shape[1] < 384*384 or img_size<100:
index = random.randint(0, self.__len__()-1)
gt_path = self.paths[index]
time.sleep(0.1) # sleep 1s for occasional server congestion
img_bytes = self.file_client.get(gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
img_size = os.path.getsize(gt_path)
img_size = img_size / 1024
# -------------------- Do augmentation for training: flip, rotation -------------------- #
img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])
# crop or pad to 400
# TODO: 400 is hard-coded. You may change it accordingly
h, w = img_gt.shape[0:2]
crop_pad_size = self.crop_size
# pad
if h < crop_pad_size or w < crop_pad_size:
pad_h = max(0, crop_pad_size - h)
pad_w = max(0, crop_pad_size - w)
img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
# crop
if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
h, w = img_gt.shape[0:2]
# randomly choose top and left coordinates
top = random.randint(0, h - crop_pad_size)
left = random.randint(0, w - crop_pad_size)
# top = (h - crop_pad_size) // 2 -1
# left = (w - crop_pad_size) // 2 -1
img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...]
# ------------------------ Generate kernels (used in the first degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range)
if np.random.uniform() < self.opt['sinc_prob']:
# this sinc filter setting is for kernels ranging from [7, 21]
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel = random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
kernel_size,
self.blur_sigma,
self.blur_sigma, [-math.pi, math.pi],
self.betag_range,
self.betap_range,
noise_range=None)
# pad kernel
pad_size = (21 - kernel_size) // 2
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------ Generate kernels (used in the second degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range)
if np.random.uniform() < self.opt['sinc_prob2']:
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel2 = random_mixed_kernels(
self.kernel_list2,
self.kernel_prob2,
kernel_size,
self.blur_sigma2,
self.blur_sigma2, [-math.pi, math.pi],
self.betag_range2,
self.betap_range2,
noise_range=None)
# pad kernel
pad_size = (21 - kernel_size) // 2
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------------------- the final sinc kernel ------------------------------------- #
if np.random.uniform() < self.opt['final_sinc_prob']:
kernel_size = random.choice(self.kernel_range)
omega_c = np.random.uniform(np.pi / 3, np.pi)
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
sinc_kernel = torch.FloatTensor(sinc_kernel)
else:
sinc_kernel = self.pulse_tensor
# BGR to RGB, HWC to CHW, numpy to tensor
img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
kernel = torch.FloatTensor(kernel)
kernel2 = torch.FloatTensor(kernel2)
return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path}
return return_d
def __len__(self):
return len(self.paths)
def randn_cropinput(lq, gt, base_size=[64, 128, 256, 512]):
cur_size_h = random.choice(base_size)
cur_size_w = random.choice(base_size)
init_h = lq.size(-2)//2
init_w = lq.size(-1)//2
lq = lq[:, :, init_h-cur_size_h//2:init_h+cur_size_h//2, init_w-cur_size_w//2:init_w+cur_size_w//2]
gt = gt[:, :, init_h-cur_size_h//2:init_h+cur_size_h//2, init_w-cur_size_w//2:init_w+cur_size_w//2]
assert lq.size(-1)>=64
assert lq.size(-2)>=64
return [lq, gt]
def degradation_proc(configs, batch, device, val=False, use_usm=False, resize_lq=True, random_size=False):
"""Degradation pipeline, modified from Real-ESRGAN:
https://github.com/xinntao/Real-ESRGAN
"""
jpeger = DiffJPEG(differentiable=False).cuda() # simulate JPEG compression artifacts
usm_sharpener = USMSharp().cuda() # do usm sharpening
im_gt = batch['gt'].cuda()
if use_usm:
im_gt = usm_sharpener(im_gt)
im_gt = im_gt.to(memory_format=torch.contiguous_format).float()
kernel1 = batch['kernel1'].cuda()
kernel2 = batch['kernel2'].cuda()
sinc_kernel = batch['sinc_kernel'].cuda()
ori_h, ori_w = im_gt.size()[2:4]
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(im_gt, kernel1)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
configs.degradation['resize_prob'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, configs.degradation['resize_range'][1])
elif updown_type == 'down':
scale = random.uniform(configs.degradation['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = configs.degradation['gray_noise_prob']
if random.random() < configs.degradation['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=configs.degradation['noise_range'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=configs.degradation['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*configs.degradation['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
# blur
if random.random() < configs.degradation['second_blur_prob']:
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
configs.degradation['resize_prob2'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, configs.degradation['resize_range2'][1])
elif updown_type == 'down':
scale = random.uniform(configs.degradation['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(int(ori_h / configs.sf * scale),
int(ori_w / configs.sf * scale)),
mode=mode,
)
# add noise
gray_noise_prob = configs.degradation['gray_noise_prob2']
if random.random() < configs.degradation['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=configs.degradation['noise_range2'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=configs.degradation['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False,
)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if random.random() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // configs.sf,
ori_w // configs.sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*configs.degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*configs.degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // configs.sf,
ori_w // configs.sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# clamp and round
im_lq = torch.clamp(out, 0, 1.0)
# random crop
gt_size = configs.degradation['gt_size']
im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, configs.sf)
lq, gt = im_lq, im_gt
ori_lq = im_lq
if resize_lq:
lq = F.interpolate(
lq,
size=(gt.size(-2),
gt.size(-1)),
mode='bicubic',
)
if random.random() < configs.degradation['no_degradation_prob'] or torch.isnan(lq).any():
lq = gt
# sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue
lq = lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
lq = lq * 2 - 1.0 # TODO 0~1?
gt = gt * 2 - 1.0
if random_size:
lq, gt = randn_cropinput(lq, gt)
lq = torch.clamp(lq, -1.0, 1.0)
return lq.to(device), gt.to(device), ori_lq.to(device)