|
import argparse |
|
import json |
|
from PIL import Image |
|
from torchvision import transforms |
|
import torch.nn.functional as F |
|
from glob import glob |
|
|
|
import cv2 |
|
import math |
|
import numpy as np |
|
import os |
|
import os.path as osp |
|
import random |
|
import time |
|
import torch |
|
from pathlib import Path |
|
from torch.utils import data as data |
|
|
|
from basicsr.utils import DiffJPEG, USMSharp |
|
from basicsr.utils.img_process_util import filter2D |
|
from basicsr.data.transforms import paired_random_crop, triplet_random_crop |
|
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt, random_add_speckle_noise_pt, random_add_saltpepper_noise_pt, bivariate_Gaussian |
|
|
|
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels |
|
from basicsr.data.transforms import augment |
|
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor |
|
from basicsr.utils.registry import DATASET_REGISTRY |
|
|
|
def parse_args_paired_training(input_args=None): |
|
""" |
|
Parses command-line arguments used for configuring an paired session (pix2pix-Turbo). |
|
This function sets up an argument parser to handle various training options. |
|
|
|
Returns: |
|
argparse.Namespace: The parsed command-line arguments. |
|
""" |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--gan_disc_type", default="vagan") |
|
parser.add_argument("--gan_loss_type", default="multilevel_sigmoid_s") |
|
parser.add_argument("--lambda_gan", default=0.5, type=float) |
|
parser.add_argument("--lambda_lpips", default=5.0, type=float) |
|
parser.add_argument("--lambda_l2", default=2.0, type=float) |
|
parser.add_argument("--base_config", default="./configs/sr.yaml", type=str) |
|
|
|
|
|
parser.add_argument("--eval_freq", default=100, type=int) |
|
parser.add_argument("--save_val", default=True, action="store_false") |
|
parser.add_argument("--num_samples_eval", type=int, default=100, help="Number of samples to use for all evaluation") |
|
|
|
parser.add_argument("--viz_freq", type=int, default=100, help="Frequency of visualizing the outputs.") |
|
|
|
|
|
parser.add_argument("--sd_path") |
|
parser.add_argument("--pretrained_path", type=str, default=None,) |
|
parser.add_argument("--de_net_path") |
|
parser.add_argument("--revision", type=str, default=None,) |
|
parser.add_argument("--variant", type=str, default=None,) |
|
parser.add_argument("--tokenizer_name", type=str, default=None) |
|
parser.add_argument("--lora_rank_unet", default=32, type=int) |
|
parser.add_argument("--lora_rank_vae", default=16, type=int) |
|
parser.add_argument("--neg_prob", default=0.05, type=float) |
|
parser.add_argument("--pos_prompt", type=str, default="A high-resolution, 8K, ultra-realistic image with sharp focus, vibrant colors, and natural lighting.") |
|
parser.add_argument("--neg_prompt", type=str, default="oil painting, cartoon, blur, dirty, messy, low quality, deformation, low resolution, oversmooth") |
|
|
|
|
|
parser.add_argument("--output_dir", required=True) |
|
parser.add_argument("--cache_dir", default=None,) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument("--resolution", type=int, default=512,) |
|
parser.add_argument("--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader.") |
|
parser.add_argument("--num_training_epochs", type=int, default=50) |
|
parser.add_argument("--max_train_steps", type=int, default=50000,) |
|
parser.add_argument("--checkpointing_steps", type=int, default=500,) |
|
parser.add_argument("--gradient_accumulation_steps", type=int, default=4, help="Number of updates steps to accumulate before performing a backward/update pass.",) |
|
parser.add_argument("--gradient_checkpointing", action="store_true",) |
|
parser.add_argument("--learning_rate", type=float, default=2e-5) |
|
parser.add_argument("--lr_scheduler", type=str, default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "piecewise_constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument("--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler.") |
|
parser.add_argument("--lr_num_cycles", type=int, default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=0.1, help="Power factor of the polynomial scheduler.") |
|
|
|
parser.add_argument("--dataloader_num_workers", type=int, default=0,) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--allow_tf32", action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument("--report_to", type=str, default="wandb", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument("--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"],) |
|
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.") |
|
parser.add_argument("--set_grads_to_none", action="store_true",) |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
|
|
class PairedDataset(data.Dataset): |
|
"""Modified dataset based on the dataset used for Real-ESRGAN model: |
|
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data. |
|
|
|
It loads gt (Ground-Truth) images, and augments them. |
|
It also generates blur kernels and sinc kernels for generating low-quality images. |
|
Note that the low-quality images are processed in tensors on GPUS for faster processing. |
|
|
|
Args: |
|
opt (dict): Config for train datasets. It contains the following keys: |
|
dataroot_gt (str): Data root path for gt. |
|
meta_info (str): Path for meta information file. |
|
io_backend (dict): IO backend type and other kwarg. |
|
use_hflip (bool): Use horizontal flips. |
|
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). |
|
Please see more options in the codes. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(PairedDataset, self).__init__() |
|
self.opt = opt |
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
if 'crop_size' in opt: |
|
self.crop_size = opt['crop_size'] |
|
else: |
|
self.crop_size = 512 |
|
if 'image_type' not in opt: |
|
opt['image_type'] = 'png' |
|
|
|
|
|
self.paths = [] |
|
if 'meta_info' in opt: |
|
with open(self.opt['meta_info']) as fin: |
|
paths = [line.strip().split(' ')[0] for line in fin] |
|
self.paths = [v for v in paths] |
|
if 'meta_num' in opt: |
|
self.paths = sorted(self.paths)[:opt['meta_num']] |
|
if 'gt_path' in opt: |
|
if isinstance(opt['gt_path'], str): |
|
|
|
self.paths.extend(sorted([str(x) for x in Path(opt['gt_path']).rglob('*.' + opt['image_type'])])) |
|
else: |
|
for path in opt['gt_path']: |
|
self.paths.extend(sorted([str(x) for x in Path(path).rglob('*.' + opt['image_type'])])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if 'imagenet_path' in opt: |
|
class_list = os.listdir(opt['imagenet_path']) |
|
for class_file in class_list: |
|
self.paths.extend(sorted([str(x) for x in Path(os.path.join(opt['imagenet_path'], class_file)).glob('*.'+'JPEG')])) |
|
if 'face_gt_path' in opt: |
|
if isinstance(opt['face_gt_path'], str): |
|
face_list = sorted([str(x) for x in Path(opt['face_gt_path']).glob('*.'+opt['image_type'])]) |
|
self.paths.extend(face_list[:opt['num_face']]) |
|
else: |
|
face_list = sorted([str(x) for x in Path(opt['face_gt_path'][0]).glob('*.'+opt['image_type'])]) |
|
self.paths.extend(face_list[:opt['num_face']]) |
|
if len(opt['face_gt_path']) > 1: |
|
for i in range(len(opt['face_gt_path'])-1): |
|
self.paths.extend(sorted([str(x) for x in Path(opt['face_gt_path'][0]).glob('*.'+opt['image_type'])])[:opt['num_face']]) |
|
|
|
|
|
if 'num_pic' in opt: |
|
if 'val' or 'test' in opt: |
|
random.shuffle(self.paths) |
|
self.paths = self.paths[:opt['num_pic']] |
|
else: |
|
self.paths = self.paths[:opt['num_pic']] |
|
|
|
if 'mul_num' in opt: |
|
self.paths = self.paths * opt['mul_num'] |
|
|
|
|
|
|
|
|
|
self.blur_kernel_size = opt['blur_kernel_size'] |
|
self.kernel_list = opt['kernel_list'] |
|
self.kernel_prob = opt['kernel_prob'] |
|
self.blur_sigma = opt['blur_sigma'] |
|
self.betag_range = opt['betag_range'] |
|
self.betap_range = opt['betap_range'] |
|
self.sinc_prob = opt['sinc_prob'] |
|
|
|
|
|
self.blur_kernel_size2 = opt['blur_kernel_size2'] |
|
self.kernel_list2 = opt['kernel_list2'] |
|
self.kernel_prob2 = opt['kernel_prob2'] |
|
self.blur_sigma2 = opt['blur_sigma2'] |
|
self.betag_range2 = opt['betag_range2'] |
|
self.betap_range2 = opt['betap_range2'] |
|
self.sinc_prob2 = opt['sinc_prob2'] |
|
|
|
|
|
self.final_sinc_prob = opt['final_sinc_prob'] |
|
|
|
self.kernel_range = [2 * v + 1 for v in range(3, 11)] |
|
|
|
self.pulse_tensor = torch.zeros(21, 21).float() |
|
self.pulse_tensor[10, 10] = 1 |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
|
|
|
|
gt_path = self.paths[index] |
|
|
|
retry = 3 |
|
while retry > 0: |
|
try: |
|
img_bytes = self.file_client.get(gt_path, 'gt') |
|
except (IOError, OSError) as e: |
|
|
|
|
|
|
|
index = random.randint(0, self.__len__()-1) |
|
gt_path = self.paths[index] |
|
time.sleep(1) |
|
else: |
|
break |
|
finally: |
|
retry -= 1 |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
|
|
img_size = os.path.getsize(gt_path) |
|
img_size = img_size / 1024 |
|
|
|
while img_gt.shape[0] * img_gt.shape[1] < 384*384 or img_size<100: |
|
index = random.randint(0, self.__len__()-1) |
|
gt_path = self.paths[index] |
|
|
|
time.sleep(0.1) |
|
img_bytes = self.file_client.get(gt_path, 'gt') |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
img_size = os.path.getsize(gt_path) |
|
img_size = img_size / 1024 |
|
|
|
|
|
img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot']) |
|
|
|
|
|
|
|
h, w = img_gt.shape[0:2] |
|
crop_pad_size = self.crop_size |
|
|
|
if h < crop_pad_size or w < crop_pad_size: |
|
pad_h = max(0, crop_pad_size - h) |
|
pad_w = max(0, crop_pad_size - w) |
|
img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101) |
|
|
|
if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size: |
|
h, w = img_gt.shape[0:2] |
|
|
|
top = random.randint(0, h - crop_pad_size) |
|
left = random.randint(0, w - crop_pad_size) |
|
|
|
|
|
img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...] |
|
|
|
|
|
kernel_size = random.choice(self.kernel_range) |
|
if np.random.uniform() < self.opt['sinc_prob']: |
|
|
|
if kernel_size < 13: |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
else: |
|
omega_c = np.random.uniform(np.pi / 5, np.pi) |
|
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) |
|
else: |
|
kernel = random_mixed_kernels( |
|
self.kernel_list, |
|
self.kernel_prob, |
|
kernel_size, |
|
self.blur_sigma, |
|
self.blur_sigma, [-math.pi, math.pi], |
|
self.betag_range, |
|
self.betap_range, |
|
noise_range=None) |
|
|
|
pad_size = (21 - kernel_size) // 2 |
|
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) |
|
|
|
|
|
kernel_size = random.choice(self.kernel_range) |
|
if np.random.uniform() < self.opt['sinc_prob2']: |
|
if kernel_size < 13: |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
else: |
|
omega_c = np.random.uniform(np.pi / 5, np.pi) |
|
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) |
|
else: |
|
kernel2 = random_mixed_kernels( |
|
self.kernel_list2, |
|
self.kernel_prob2, |
|
kernel_size, |
|
self.blur_sigma2, |
|
self.blur_sigma2, [-math.pi, math.pi], |
|
self.betag_range2, |
|
self.betap_range2, |
|
noise_range=None) |
|
|
|
|
|
pad_size = (21 - kernel_size) // 2 |
|
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) |
|
|
|
|
|
if np.random.uniform() < self.opt['final_sinc_prob']: |
|
kernel_size = random.choice(self.kernel_range) |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21) |
|
sinc_kernel = torch.FloatTensor(sinc_kernel) |
|
else: |
|
sinc_kernel = self.pulse_tensor |
|
|
|
|
|
img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0] |
|
kernel = torch.FloatTensor(kernel) |
|
kernel2 = torch.FloatTensor(kernel2) |
|
|
|
return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path} |
|
return return_d |
|
|
|
def __len__(self): |
|
return len(self.paths) |
|
|
|
|
|
def randn_cropinput(lq, gt, base_size=[64, 128, 256, 512]): |
|
cur_size_h = random.choice(base_size) |
|
cur_size_w = random.choice(base_size) |
|
init_h = lq.size(-2)//2 |
|
init_w = lq.size(-1)//2 |
|
lq = lq[:, :, init_h-cur_size_h//2:init_h+cur_size_h//2, init_w-cur_size_w//2:init_w+cur_size_w//2] |
|
gt = gt[:, :, init_h-cur_size_h//2:init_h+cur_size_h//2, init_w-cur_size_w//2:init_w+cur_size_w//2] |
|
assert lq.size(-1)>=64 |
|
assert lq.size(-2)>=64 |
|
return [lq, gt] |
|
|
|
|
|
def degradation_proc(configs, batch, device, val=False, use_usm=False, resize_lq=True, random_size=False): |
|
|
|
"""Degradation pipeline, modified from Real-ESRGAN: |
|
https://github.com/xinntao/Real-ESRGAN |
|
""" |
|
|
|
jpeger = DiffJPEG(differentiable=False).cuda() |
|
usm_sharpener = USMSharp().cuda() |
|
|
|
im_gt = batch['gt'].cuda() |
|
if use_usm: |
|
im_gt = usm_sharpener(im_gt) |
|
im_gt = im_gt.to(memory_format=torch.contiguous_format).float() |
|
kernel1 = batch['kernel1'].cuda() |
|
kernel2 = batch['kernel2'].cuda() |
|
sinc_kernel = batch['sinc_kernel'].cuda() |
|
|
|
ori_h, ori_w = im_gt.size()[2:4] |
|
|
|
|
|
|
|
out = filter2D(im_gt, kernel1) |
|
|
|
updown_type = random.choices( |
|
['up', 'down', 'keep'], |
|
configs.degradation['resize_prob'], |
|
)[0] |
|
if updown_type == 'up': |
|
scale = random.uniform(1, configs.degradation['resize_range'][1]) |
|
elif updown_type == 'down': |
|
scale = random.uniform(configs.degradation['resize_range'][0], 1) |
|
else: |
|
scale = 1 |
|
mode = random.choice(['area', 'bilinear', 'bicubic']) |
|
out = F.interpolate(out, scale_factor=scale, mode=mode) |
|
|
|
gray_noise_prob = configs.degradation['gray_noise_prob'] |
|
if random.random() < configs.degradation['gaussian_noise_prob']: |
|
out = random_add_gaussian_noise_pt( |
|
out, |
|
sigma_range=configs.degradation['noise_range'], |
|
clip=True, |
|
rounds=False, |
|
gray_prob=gray_noise_prob, |
|
) |
|
else: |
|
out = random_add_poisson_noise_pt( |
|
out, |
|
scale_range=configs.degradation['poisson_scale_range'], |
|
gray_prob=gray_noise_prob, |
|
clip=True, |
|
rounds=False) |
|
|
|
jpeg_p = out.new_zeros(out.size(0)).uniform_(*configs.degradation['jpeg_range']) |
|
out = torch.clamp(out, 0, 1) |
|
out = jpeger(out, quality=jpeg_p) |
|
|
|
|
|
|
|
if random.random() < configs.degradation['second_blur_prob']: |
|
out = filter2D(out, kernel2) |
|
|
|
updown_type = random.choices( |
|
['up', 'down', 'keep'], |
|
configs.degradation['resize_prob2'], |
|
)[0] |
|
if updown_type == 'up': |
|
scale = random.uniform(1, configs.degradation['resize_range2'][1]) |
|
elif updown_type == 'down': |
|
scale = random.uniform(configs.degradation['resize_range2'][0], 1) |
|
else: |
|
scale = 1 |
|
mode = random.choice(['area', 'bilinear', 'bicubic']) |
|
out = F.interpolate( |
|
out, |
|
size=(int(ori_h / configs.sf * scale), |
|
int(ori_w / configs.sf * scale)), |
|
mode=mode, |
|
) |
|
|
|
gray_noise_prob = configs.degradation['gray_noise_prob2'] |
|
if random.random() < configs.degradation['gaussian_noise_prob2']: |
|
out = random_add_gaussian_noise_pt( |
|
out, |
|
sigma_range=configs.degradation['noise_range2'], |
|
clip=True, |
|
rounds=False, |
|
gray_prob=gray_noise_prob, |
|
) |
|
else: |
|
out = random_add_poisson_noise_pt( |
|
out, |
|
scale_range=configs.degradation['poisson_scale_range2'], |
|
gray_prob=gray_noise_prob, |
|
clip=True, |
|
rounds=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if random.random() < 0.5: |
|
|
|
mode = random.choice(['area', 'bilinear', 'bicubic']) |
|
out = F.interpolate( |
|
out, |
|
size=(ori_h // configs.sf, |
|
ori_w // configs.sf), |
|
mode=mode, |
|
) |
|
out = filter2D(out, sinc_kernel) |
|
|
|
jpeg_p = out.new_zeros(out.size(0)).uniform_(*configs.degradation['jpeg_range2']) |
|
out = torch.clamp(out, 0, 1) |
|
out = jpeger(out, quality=jpeg_p) |
|
else: |
|
|
|
jpeg_p = out.new_zeros(out.size(0)).uniform_(*configs.degradation['jpeg_range2']) |
|
out = torch.clamp(out, 0, 1) |
|
out = jpeger(out, quality=jpeg_p) |
|
|
|
mode = random.choice(['area', 'bilinear', 'bicubic']) |
|
out = F.interpolate( |
|
out, |
|
size=(ori_h // configs.sf, |
|
ori_w // configs.sf), |
|
mode=mode, |
|
) |
|
out = filter2D(out, sinc_kernel) |
|
|
|
|
|
im_lq = torch.clamp(out, 0, 1.0) |
|
|
|
|
|
gt_size = configs.degradation['gt_size'] |
|
im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, configs.sf) |
|
lq, gt = im_lq, im_gt |
|
ori_lq = im_lq |
|
|
|
if resize_lq: |
|
lq = F.interpolate( |
|
lq, |
|
size=(gt.size(-2), |
|
gt.size(-1)), |
|
mode='bicubic', |
|
) |
|
|
|
if random.random() < configs.degradation['no_degradation_prob'] or torch.isnan(lq).any(): |
|
lq = gt |
|
|
|
|
|
lq = lq.contiguous() |
|
lq = lq * 2 - 1.0 |
|
gt = gt * 2 - 1.0 |
|
|
|
if random_size: |
|
lq, gt = randn_cropinput(lq, gt) |
|
|
|
lq = torch.clamp(lq, -1.0, 1.0) |
|
|
|
return lq.to(device), gt.to(device), ori_lq.to(device) |
|
|