S3Diff / basicsr /data /ffhq_dataset.py
zhangap's picture
Upload 213 files
36d9761 verified
import random
import time
from os import path as osp
from torch.utils import data as data
from torchvision.transforms.functional import normalize
from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class FFHQDataset(data.Dataset):
"""FFHQ dataset for StyleGAN.
Args:
opt (dict): Config for train datasets. It contains the following keys:
dataroot_gt (str): Data root path for gt.
io_backend (dict): IO backend type and other kwarg.
mean (list | tuple): Image mean.
std (list | tuple): Image std.
use_hflip (bool): Whether to horizontally flip.
"""
def __init__(self, opt):
super(FFHQDataset, self).__init__()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.gt_folder = opt['dataroot_gt']
self.mean = opt['mean']
self.std = opt['std']
if self.io_backend_opt['type'] == 'lmdb':
self.io_backend_opt['db_paths'] = self.gt_folder
if not self.gt_folder.endswith('.lmdb'):
raise ValueError("'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
self.paths = [line.split('.')[0] for line in fin]
else:
# FFHQ has 70000 images in total
self.paths = [osp.join(self.gt_folder, f'{v:08d}.png') for v in range(70000)]
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# load gt image
gt_path = self.paths[index]
# avoid errors caused by high latency in reading files
retry = 3
while retry > 0:
try:
img_bytes = self.file_client.get(gt_path)
except Exception as e:
logger = get_root_logger()
logger.warning(f'File client error: {e}, remaining retry times: {retry - 1}')
# change another file to read
index = random.randint(0, self.__len__())
gt_path = self.paths[index]
time.sleep(1) # sleep 1s for occasional server congestion
else:
break
finally:
retry -= 1
img_gt = imfrombytes(img_bytes, float32=True)
# random horizontal flip
img_gt = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False)
# BGR to RGB, HWC to CHW, numpy to tensor
img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True)
# normalize
normalize(img_gt, self.mean, self.std, inplace=True)
return {'gt': img_gt, 'gt_path': gt_path}
def __len__(self):
return len(self.paths)