|
from os import path as osp |
|
from torch.utils import data as data |
|
from torchvision.transforms.functional import normalize |
|
|
|
from basicsr.data.data_util import paths_from_lmdb |
|
from basicsr.utils import FileClient, imfrombytes, img2tensor, rgb2ycbcr, scandir |
|
from basicsr.utils.registry import DATASET_REGISTRY |
|
|
|
from pathlib import Path |
|
import random |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
@DATASET_REGISTRY.register() |
|
class SingleImageDataset(data.Dataset): |
|
"""Read only lq images in the test phase. |
|
|
|
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc). |
|
|
|
There are two modes: |
|
1. 'meta_info_file': Use meta information file to generate paths. |
|
2. 'folder': Scan folders to generate paths. |
|
|
|
Args: |
|
opt (dict): Config for train datasets. It contains the following keys: |
|
dataroot_lq (str): Data root path for lq. |
|
meta_info_file (str): Path for meta information file. |
|
io_backend (dict): IO backend type and other kwarg. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(SingleImageDataset, self).__init__() |
|
self.opt = opt |
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
self.mean = opt['mean'] if 'mean' in opt else None |
|
self.std = opt['std'] if 'std' in opt else None |
|
self.lq_folder = opt['dataroot_lq'] |
|
|
|
if self.io_backend_opt['type'] == 'lmdb': |
|
self.io_backend_opt['db_paths'] = [self.lq_folder] |
|
self.io_backend_opt['client_keys'] = ['lq'] |
|
self.paths = paths_from_lmdb(self.lq_folder) |
|
elif 'meta_info_file' in self.opt: |
|
with open(self.opt['meta_info_file'], 'r') as fin: |
|
self.paths = [osp.join(self.lq_folder, line.rstrip().split(' ')[0]) for line in fin] |
|
else: |
|
self.paths = sorted(list(scandir(self.lq_folder, full_path=True))) |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
|
|
lq_path = self.paths[index] |
|
img_bytes = self.file_client.get(lq_path, 'lq') |
|
img_lq = imfrombytes(img_bytes, float32=True) |
|
|
|
|
|
if 'color' in self.opt and self.opt['color'] == 'y': |
|
img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None] |
|
|
|
|
|
img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True) |
|
|
|
if self.mean is not None or self.std is not None: |
|
normalize(img_lq, self.mean, self.std, inplace=True) |
|
return {'lq': img_lq, 'lq_path': lq_path} |
|
|
|
def __len__(self): |
|
return len(self.paths) |
|
|
|
@DATASET_REGISTRY.register() |
|
class SingleImageNPDataset(data.Dataset): |
|
"""Read only lq images in the test phase. |
|
|
|
Read diffusion generated data for training CFW. |
|
|
|
Args: |
|
opt (dict): Config for train datasets. It contains the following keys: |
|
gt_path: Data root path for training data. The path needs to contain the following folders: |
|
gts: Ground-truth images. |
|
inputs: Input LQ images. |
|
latents: The corresponding HQ latent code generated by diffusion model given the input LQ image. |
|
samples: The corresponding HQ image given the HQ latent code, just for verification. |
|
io_backend (dict): IO backend type and other kwarg. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(SingleImageNPDataset, self).__init__() |
|
self.opt = opt |
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
self.mean = opt['mean'] if 'mean' in opt else None |
|
self.std = opt['std'] if 'std' in opt else None |
|
if 'image_type' not in opt: |
|
opt['image_type'] = 'png' |
|
|
|
if isinstance(opt['gt_path'], str): |
|
self.gt_paths = sorted([str(x) for x in Path(opt['gt_path']+'/gts').glob('*.'+opt['image_type'])]) |
|
self.lq_paths = sorted([str(x) for x in Path(opt['gt_path']+'/inputs').glob('*.'+opt['image_type'])]) |
|
self.np_paths = sorted([str(x) for x in Path(opt['gt_path']+'/latents').glob('*.npy')]) |
|
self.sample_paths = sorted([str(x) for x in Path(opt['gt_path']+'/samples').glob('*.'+opt['image_type'])]) |
|
else: |
|
self.gt_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/gts').glob('*.'+opt['image_type'])]) |
|
self.lq_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/inputs').glob('*.'+opt['image_type'])]) |
|
self.np_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/latents').glob('*.npy')]) |
|
self.sample_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/samples').glob('*.'+opt['image_type'])]) |
|
if len(opt['gt_path']) > 1: |
|
for i in range(len(opt['gt_path'])-1): |
|
self.gt_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/gts').glob('*.'+opt['image_type'])])) |
|
self.lq_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/inputs').glob('*.'+opt['image_type'])])) |
|
self.np_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/latents').glob('*.npy')])) |
|
self.sample_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/samples').glob('*.'+opt['image_type'])])) |
|
|
|
assert len(self.gt_paths) == len(self.lq_paths) |
|
assert len(self.gt_paths) == len(self.np_paths) |
|
assert len(self.gt_paths) == len(self.sample_paths) |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
|
|
lq_path = self.lq_paths[index] |
|
gt_path = self.gt_paths[index] |
|
sample_path = self.sample_paths[index] |
|
np_path = self.np_paths[index] |
|
|
|
img_bytes = self.file_client.get(lq_path, 'lq') |
|
img_lq = imfrombytes(img_bytes, float32=True) |
|
|
|
img_bytes_gt = self.file_client.get(gt_path, 'gt') |
|
img_gt = imfrombytes(img_bytes_gt, float32=True) |
|
|
|
img_bytes_sample = self.file_client.get(sample_path, 'sample') |
|
img_sample = imfrombytes(img_bytes_sample, float32=True) |
|
|
|
latent_np = np.load(np_path) |
|
|
|
|
|
if 'color' in self.opt and self.opt['color'] == 'y': |
|
img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None] |
|
img_gt = rgb2ycbcr(img_gt, y_only=True)[..., None] |
|
img_sample = rgb2ycbcr(img_sample, y_only=True)[..., None] |
|
|
|
|
|
img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True) |
|
img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True) |
|
img_sample = img2tensor(img_sample, bgr2rgb=True, float32=True) |
|
latent_np = torch.from_numpy(latent_np).float() |
|
latent_np = latent_np.to(img_gt.device) |
|
|
|
if self.mean is not None or self.std is not None: |
|
normalize(img_lq, self.mean, self.std, inplace=True) |
|
normalize(img_gt, self.mean, self.std, inplace=True) |
|
normalize(img_sample, self.mean, self.std, inplace=True) |
|
return {'lq': img_lq, 'lq_path': lq_path, 'gt': img_gt, 'gt_path': gt_path, 'latent': latent_np[0], 'latent_path': np_path, 'sample': img_sample, 'sample_path': sample_path} |
|
|
|
def __len__(self): |
|
return len(self.gt_paths) |
|
|