S3Diff / basicsr /losses /gan_loss.py
zhangap's picture
Upload 213 files
36d9761 verified
import math
import torch
from torch import autograd as autograd
from torch import nn as nn
from torch.nn import functional as F
from basicsr.utils.registry import LOSS_REGISTRY
@LOSS_REGISTRY.register()
class GANLoss(nn.Module):
"""Define GAN loss.
Args:
gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'.
real_label_val (float): The value for real label. Default: 1.0.
fake_label_val (float): The value for fake label. Default: 0.0.
loss_weight (float): Loss weight. Default: 1.0.
Note that loss_weight is only for generators; and it is always 1.0
for discriminators.
"""
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0):
super(GANLoss, self).__init__()
self.gan_type = gan_type
self.loss_weight = loss_weight
self.real_label_val = real_label_val
self.fake_label_val = fake_label_val
if self.gan_type == 'vanilla':
self.loss = nn.BCEWithLogitsLoss()
elif self.gan_type == 'lsgan':
self.loss = nn.MSELoss()
elif self.gan_type == 'wgan':
self.loss = self._wgan_loss
elif self.gan_type == 'wgan_softplus':
self.loss = self._wgan_softplus_loss
elif self.gan_type == 'hinge':
self.loss = nn.ReLU()
else:
raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.')
def _wgan_loss(self, input, target):
"""wgan loss.
Args:
input (Tensor): Input tensor.
target (bool): Target label.
Returns:
Tensor: wgan loss.
"""
return -input.mean() if target else input.mean()
def _wgan_softplus_loss(self, input, target):
"""wgan loss with soft plus. softplus is a smooth approximation to the
ReLU function.
In StyleGAN2, it is called:
Logistic loss for discriminator;
Non-saturating loss for generator.
Args:
input (Tensor): Input tensor.
target (bool): Target label.
Returns:
Tensor: wgan loss.
"""
return F.softplus(-input).mean() if target else F.softplus(input).mean()
def get_target_label(self, input, target_is_real):
"""Get target label.
Args:
input (Tensor): Input tensor.
target_is_real (bool): Whether the target is real or fake.
Returns:
(bool | Tensor): Target tensor. Return bool for wgan, otherwise,
return Tensor.
"""
if self.gan_type in ['wgan', 'wgan_softplus']:
return target_is_real
target_val = (self.real_label_val if target_is_real else self.fake_label_val)
return input.new_ones(input.size()) * target_val
def forward(self, input, target_is_real, is_disc=False):
"""
Args:
input (Tensor): The input for the loss module, i.e., the network
prediction.
target_is_real (bool): Whether the targe is real or fake.
is_disc (bool): Whether the loss for discriminators or not.
Default: False.
Returns:
Tensor: GAN loss value.
"""
target_label = self.get_target_label(input, target_is_real)
if self.gan_type == 'hinge':
if is_disc: # for discriminators in hinge-gan
input = -input if target_is_real else input
loss = self.loss(1 + input).mean()
else: # for generators in hinge-gan
loss = -input.mean()
else: # other gan types
loss = self.loss(input, target_label)
# loss_weight is always 1.0 for discriminators
return loss if is_disc else loss * self.loss_weight
@LOSS_REGISTRY.register()
class MultiScaleGANLoss(GANLoss):
"""
MultiScaleGANLoss accepts a list of predictions
"""
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0):
super(MultiScaleGANLoss, self).__init__(gan_type, real_label_val, fake_label_val, loss_weight)
def forward(self, input, target_is_real, is_disc=False):
"""
The input is a list of tensors, or a list of (a list of tensors)
"""
if isinstance(input, list):
loss = 0
for pred_i in input:
if isinstance(pred_i, list):
# Only compute GAN loss for the last layer
# in case of multiscale feature matching
pred_i = pred_i[-1]
# Safe operation: 0-dim tensor calling self.mean() does nothing
loss_tensor = super().forward(pred_i, target_is_real, is_disc).mean()
loss += loss_tensor
return loss / len(input)
else:
return super().forward(input, target_is_real, is_disc)
def r1_penalty(real_pred, real_img):
"""R1 regularization for discriminator. The core idea is to
penalize the gradient on real data alone: when the
generator distribution produces the true data distribution
and the discriminator is equal to 0 on the data manifold, the
gradient penalty ensures that the discriminator cannot create
a non-zero gradient orthogonal to the data manifold without
suffering a loss in the GAN game.
Reference: Eq. 9 in Which training methods for GANs do actually converge.
"""
grad_real = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0]
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(fake_img.shape[2] * fake_img.shape[3])
grad = autograd.grad(outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0]
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_lengths.detach().mean(), path_mean.detach()
def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None):
"""Calculate gradient penalty for wgan-gp.
Args:
discriminator (nn.Module): Network for the discriminator.
real_data (Tensor): Real input data.
fake_data (Tensor): Fake input data.
weight (Tensor): Weight tensor. Default: None.
Returns:
Tensor: A tensor for gradient penalty.
"""
batch_size = real_data.size(0)
alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1))
# interpolate between real_data and fake_data
interpolates = alpha * real_data + (1. - alpha) * fake_data
interpolates = autograd.Variable(interpolates, requires_grad=True)
disc_interpolates = discriminator(interpolates)
gradients = autograd.grad(
outputs=disc_interpolates,
inputs=interpolates,
grad_outputs=torch.ones_like(disc_interpolates),
create_graph=True,
retain_graph=True,
only_inputs=True)[0]
if weight is not None:
gradients = gradients * weight
gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean()
if weight is not None:
gradients_penalty /= torch.mean(weight)
return gradients_penalty