import torch import os import requests from tqdm import tqdm from diffusers import DDPMScheduler, EulerDiscreteScheduler from typing import Any, Optional, Union # def make_1step_sched(pretrained_path, step=4): # noise_scheduler_1step = EulerDiscreteScheduler.from_pretrained(pretrained_path, subfolder="scheduler") # noise_scheduler_1step.set_timesteps(step, device="cuda") # noise_scheduler_1step.alphas_cumprod = noise_scheduler_1step.alphas_cumprod.cuda() # return noise_scheduler_1step def make_1step_sched(pretrained_path): noise_scheduler_1step = DDPMScheduler.from_pretrained(pretrained_path, subfolder="scheduler") noise_scheduler_1step.set_timesteps(1, device="cuda") noise_scheduler_1step.alphas_cumprod = noise_scheduler_1step.alphas_cumprod.cuda() return noise_scheduler_1step def my_lora_fwd(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop("adapter_names", None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] x = x.to(lora_A.weight.dtype) if not self.use_dora[active_adapter]: _tmp = lora_A(dropout(x)) if isinstance(lora_A, torch.nn.Conv2d): _tmp = torch.einsum('...khw,...kr->...rhw', _tmp, self.de_mod) elif isinstance(lora_A, torch.nn.Linear): _tmp = torch.einsum('...lk,...kr->...lr', _tmp, self.de_mod) else: raise NotImplementedError('only conv and linear are supported yet.') result = result + lora_B(_tmp) * scaling else: x = dropout(x) result = result + self._apply_dora(x, lora_A, lora_B, scaling, active_adapter) result = result.to(torch_result_dtype) return result def download_url(url, outf): if not os.path.exists(outf): print(f"Downloading checkpoint to {outf}") response = requests.get(url, stream=True) total_size_in_bytes = int(response.headers.get('content-length', 0)) block_size = 1024 # 1 Kibibyte progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) with open(outf, 'wb') as file: for data in response.iter_content(block_size): progress_bar.update(len(data)) file.write(data) progress_bar.close() if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes: print("ERROR, something went wrong") print(f"Downloaded successfully to {outf}") else: print(f"Skipping download, {outf} already exists")