import gradio as gr import os import sys import math import subprocess from typing import List import numpy as np from PIL import Image import torch import torch.nn.functional as F import torch.utils.checkpoint from diffusers.utils.import_utils import is_xformers_available from src.my_utils.testing_utils import parse_args_paired_testing from src.de_net import DEResNet from src.s3diff_tile import S3Diff from torchvision import transforms from utils.wavelet_color import wavelet_color_fix, adain_color_fix tensor_transforms = transforms.Compose([ transforms.ToTensor(), ]) args = parse_args_paired_testing() # Run the script to get pretrained models subprocess.run(["bash", "get_pretrained_models.sh"]) # Load scheduler, tokenizer and models. pretrained_model_path = 'checkpoints/s3diff.pkl' t2i_path = 'stabilityai/sd-turbo' de_net_path = 'assets/mm-realsr/de_net.pth' # initialize net_sr net_sr = S3Diff(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae, sd_path=t2i_path, pretrained_path=pretrained_model_path, args=args) net_sr.set_eval() # initalize degradation estimation network net_de = DEResNet(num_in_ch=3, num_degradation=2) net_de.load_model(de_net_path) net_de = net_de.cuda() net_de.eval() if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): net_sr.unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: net_sr.unet.enable_gradient_checkpointing() weight_dtype = torch.float32 device = "cuda" # Move text_encode and vae to gpu and cast to weight_dtype net_sr.to(device, dtype=weight_dtype) net_de.to(device, dtype=weight_dtype) @torch.no_grad() def process( input_image: Image.Image, scale_factor: float, cfg_scale: float, latent_tiled_size: int, latent_tiled_overlap: int, align_method: str, ) -> List[np.ndarray]: # positive_prompt = "" # negative_prompt = "" net_sr._set_latent_tile(latent_tiled_size = latent_tiled_size, latent_tiled_overlap = latent_tiled_overlap) im_lr = tensor_transforms(input_image).unsqueeze(0).to(device) ori_h, ori_w = im_lr.shape[2:] im_lr_resize = F.interpolate( im_lr, size=(int(ori_h * scale_factor), int(ori_w * scale_factor)), mode='bicubic', ) im_lr_resize = im_lr_resize.contiguous() im_lr_resize_norm = im_lr_resize * 2 - 1.0 im_lr_resize_norm = torch.clamp(im_lr_resize_norm, -1.0, 1.0) resize_h, resize_w = im_lr_resize_norm.shape[2:] pad_h = (math.ceil(resize_h / 64)) * 64 - resize_h pad_w = (math.ceil(resize_w / 64)) * 64 - resize_w im_lr_resize_norm = F.pad(im_lr_resize_norm, pad=(0, pad_w, 0, pad_h), mode='reflect') try: with torch.autocast("cuda"): deg_score = net_de(im_lr) pos_tag_prompt = [args.pos_prompt] neg_tag_prompt = [args.neg_prompt] x_tgt_pred = net_sr(im_lr_resize_norm, deg_score, pos_prompt=pos_tag_prompt, neg_prompt=neg_tag_prompt) x_tgt_pred = x_tgt_pred[:, :, :resize_h, :resize_w] out_img = (x_tgt_pred * 0.5 + 0.5).cpu().detach() output_pil = transforms.ToPILImage()(out_img[0]) if align_method == 'no fix': image = output_pil else: im_lr_resize = transforms.ToPILImage()(im_lr_resize[0]) if align_method == 'wavelet': image = wavelet_color_fix(output_pil, im_lr_resize) elif align_method == 'adain': image = adain_color_fix(output_pil, im_lr_resize) except Exception as e: print(e) image = Image.new(mode="RGB", size=(512, 512)) return image # MARKDOWN = \ """ ## Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [GitHub](https://github.com/ArcticHare105/S3Diff) | [Paper](https://arxiv.org/abs/2409.17058) If S3Diff is helpful for you, please help star the GitHub Repo. Thanks! """ block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(): input_image = gr.Image(source="upload", type="pil") run_button = gr.Button(label="Run") with gr.Accordion("Options", open=True): cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set a value larger than 1 to enable it!)", minimum=1.0, maximum=1.1, value=1.07, step=0.01) scale_factor = gr.Number(label="SR Scale", value=4) latent_tiled_size = gr.Slider(label="Tile Size", minimum=64, maximum=160, value=96, step=1) latent_tiled_overlap = gr.Slider(label="Tile Overlap", minimum=16, maximum=48, value=32, step=1) align_method = gr.Dropdown(label="Color Correction", choices=["wavelet", "adain", "no fix"], value="wavelet") with gr.Column(): result_image = gr.Image(label="Output", show_label=False, elem_id="result_image", source="canvas", width="100%", height="auto") inputs = [ input_image, scale_factor, cfg_scale, latent_tiled_size, latent_tiled_overlap, align_method ] run_button.click(fn=process, inputs=inputs, outputs=[result_image]) block.launch()