Spaces:
Runtime error
Runtime error
File size: 19,074 Bytes
d506df2 c26bbc8 d506df2 c26bbc8 d506df2 c26bbc8 d506df2 c26bbc8 d506df2 c26bbc8 d506df2 c26bbc8 d506df2 c26bbc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
import gradio as gr
from huggingface_hub import InferenceClient
import cv2
import random
import numpy as np
from PIL import Image
import torch.nn.functional as F
import sys
from omg_llava.tools.app_utils import process_markdown, show_mask_pred, parse_visual_prompts
import torch
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig, CLIPImageProcessor,
CLIPVisionModel, GenerationConfig)
from transformers.generation.streamers import TextStreamer
from xtuner.dataset.utils import expand2square, load_image
from omg_llava.dataset.utils import expand2square_bbox, expand2square_mask, expand2square_points
from xtuner.model.utils import prepare_inputs_labels_for_multimodal
from omg_llava.model.utils import prepare_inputs_labels_for_multimodal_with_visual_prompts
from xtuner.tools.utils import get_stop_criteria
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
PROMPT_TEMPLATE, SYSTEM_TEMPLATE)
import argparse
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.fileio import PetrelBackend, get_file_backend
from xtuner.configs import cfgs_name_path
from xtuner.model.utils import guess_load_checkpoint
from xtuner.registry import BUILDER
from gradio_image_prompter import ImagePrompter
TORCH_DTYPE_MAP = dict(
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')
def parse_args(args):
parser = argparse.ArgumentParser(description="OMG-LLaVA Demo")
parser.add_argument('--config', help='config file name or path.',
default='./omg_llava/configs/finetune/hf_app.py')
parser.add_argument('--pth_model', help='pth model file',
default='./pretrained/omg_llava/omg_llava_fintune_8gpus.pth')
parser.add_argument('--image', default=None, help='image')
parser.add_argument(
'--torch-dtype',
default='fp16',
choices=TORCH_DTYPE_MAP.keys(),
help='Override the default `torch.dtype` and load the model under '
'a specific `dtype`.')
parser.add_argument(
'--prompt-template',
choices=PROMPT_TEMPLATE.keys(),
default="internlm2_chat",
help='Specify a prompt template')
system_group = parser.add_mutually_exclusive_group()
system_group.add_argument(
'--system', default=None, help='Specify the system text')
system_group.add_argument(
'--system-template',
choices=SYSTEM_TEMPLATE.keys(),
default=None,
help='Specify a system template')
parser.add_argument(
'--bits',
type=int,
choices=[4, 8, None],
default=None,
help='LLM bits')
parser.add_argument(
'--bot-name', type=str, default='BOT', help='Name for Bot')
parser.add_argument(
'--with-plugins',
nargs='+',
choices=['calculate', 'solve', 'search'],
help='Specify plugins to use')
parser.add_argument(
'--no-streamer', action='store_true', help='Whether to with streamer')
parser.add_argument(
'--lagent', action='store_true', help='Whether to use lagent')
parser.add_argument(
'--stop-words', nargs='+', type=str, default=[], help='Stop words')
parser.add_argument(
'--offload-folder',
default=None,
help='The folder in which to offload the model weights (or where the '
'model weights are already offloaded).')
parser.add_argument(
'--max-new-tokens',
type=int,
default=2048,
help='Maximum number of new tokens allowed in generated text')
parser.add_argument(
'--temperature',
type=float,
default=0.1,
help='The value used to modulate the next token probabilities.')
parser.add_argument(
'--top-k',
type=int,
default=40,
help='The number of highest probability vocabulary tokens to '
'keep for top-k-filtering.')
parser.add_argument(
'--top-p',
type=float,
default=0.75,
help='If set to float < 1, only the smallest set of most probable '
'tokens with probabilities that add up to top_p or higher are '
'kept for generation.')
parser.add_argument(
'--repetition-penalty',
type=float,
default=1.0,
help='The parameter for repetition penalty. 1.0 means no penalty.')
parser.add_argument(
'--seed',
type=int,
default=0,
help='Random seed for reproducible text generation')
return parser.parse_args(args)
def get_points_embeddings(points, input_ids, width, height,
mark_token_idx, mode='point'):
if points is None or len(points) == 0:
return []
mark_token_mask = input_ids == mark_token_idx
batch_idxs = torch.arange(input_ids.shape[0]).unsqueeze(1).repeat(1, input_ids.shape[1]).to(
input_ids.device)
batch_idxs = batch_idxs[mark_token_mask] # (N, ) batch_size number
points = points.to(torch.float32)
# print(points.dtype, batch_idxs.dtype)
if mode == 'point':
marks_embeddings = visual_encoder.forward_point_sam(
points, batch_idxs, width=width, height=height
)[:, 0] # (N, C)
elif mode == 'box':
marks_embeddings = visual_encoder.forward_box_sam(
points, batch_idxs, width=width, height=height
)[:, 0] # (N, C)
else:
raise NotImplementedError
marks_embeddings = marks_embeddings.to(projector.model.query_proj.weight.dtype)
marks_embeddings = projector.model.query_proj(marks_embeddings)
marks_embeddings = projector.model.model(marks_embeddings)
print('marks_embeddings shape: ', marks_embeddings.shape)
return marks_embeddings # (N, C)
def get_visual_prompts_embeddings(
height, width, input_ids,
):
points_prompts = global_infos.point_prompts
boxes_prompts = global_infos.box_prompts
if len(points_prompts) == 0:
points_mark_embedding = []
else:
points = np.array(points_prompts)
points = expand2square_points(points, height=height, width=width)
points[:, 0] = points[:, 0] / max(height, width) * 1024
points[:, 1] = points[:, 1] / max(height, width) * 1024
points = torch.from_numpy(points)
points = points.cuda()
mark_token_id = omg_llava.mark_token_idx
points_mark_embedding = get_points_embeddings(
points, input_ids,
1024, 1024,
mark_token_id)
if len(boxes_prompts) == 0:
boxes_mark_embedding = []
else:
boxes_prompts = np.array(boxes_prompts)
boxes_prompts = expand2square_bbox(boxes_prompts, height=height, width=width)
boxes_prompts[:, [0, 2]] = boxes_prompts[:, [0, 2]] / max(height, width) * 1024
boxes_prompts[:, [1, 3]] = boxes_prompts[:, [1, 3]] / max(height, width) * 1024
boxes_prompts = torch.from_numpy(boxes_prompts)
boxes_prompts = torch.from_numpy(boxes_prompts)
boxes_prompts = boxes_prompts.cuda()
# using <region> token
region_token_id = omg_llava.region_token_idx
boxes_mark_embedding = get_points_embeddings(
boxes_prompts, input_ids,
1024, 1024,
region_token_id)
return points_mark_embedding, boxes_mark_embedding
def inference(input_str, all_inputs, follow_up):
input_str = input_str.replace('<point>', '<mark>')\
.replace('<box>', '<region>')
print("Get Recieved Infos !!!")
prompts = all_inputs['points']
visual_prompts = parse_visual_prompts(prompts)
input_image = all_inputs['image']
print("follow_up: ", follow_up)
print(prompts)
print("input_str: ", input_str, "input_image: ", input_image)
#
if not follow_up:
# reset
print('Log: History responses have been removed!')
global_infos.n_turn = 0
global_infos.inputs = ''
# reset prompts
global_infos.point_prompts = []
global_infos.box_prompts = []
global_infos.mask_prompts = []
# first conversation, add image tokens
text = DEFAULT_IMAGE_TOKEN + '\n' + input_str
# prepare image
image = load_image(input_image)
width, height = image.size
global_infos.image_width = width
global_infos.image_height = height
image = expand2square(
image, tuple(int(x * 255) for x in image_processor.image_mean))
global_infos.image_for_show = image
image = image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
image = image.cuda().unsqueeze(0).to(visual_encoder.dtype)
visual_outputs = visual_encoder(image, output_hidden_states=True)
pixel_values = projector(visual_outputs)
global_infos.panoptic_masks = omg_llava.visual_encoder.vis_binary_masks
global_infos.pixel_values = pixel_values
# for remove padding
if width == height:
sx, ex, sy, ey = 0, width, 0, height
elif width > height:
sy = int((width - height) / 2.0)
ey = width - sy
sx, ex = 0, width
else:
sx = int((height - width) / 2.0)
ex = height - sx
sy, ey = 0, height
global_infos.sx = sx
global_infos.sy = sy
global_infos.ex = ex
global_infos.ey = ey
else:
text = input_str
pixel_values = global_infos.pixel_values
# add cur prompts into global prompts
global_infos.point_prompts += visual_prompts['points']
global_infos.box_prompts += visual_prompts['boxes']
if args.prompt_template:
prompt_text = ''
template = PROMPT_TEMPLATE[args.prompt_template]
if 'SYSTEM' in template and global_infos.n_turn == 0:
system_text = None
if args.system_template is not None:
system_text = SYSTEM_TEMPLATE[
args.system_template].format(
round=global_infos.n_turn + 1, bot_name=args.bot_name)
elif args.system is not None:
system_text = args.system
if system_text is not None:
prompt_text += template['SYSTEM'].format(
system=system_text,
round=global_infos.n_turn + 1,
bot_name=args.bot_name)
prompt_text += template['INSTRUCTION'].format(
input=text, round=global_infos.n_turn + 1, bot_name=args.bot_name)
else:
prompt_text = text
print("prompt_text: ", prompt_text)
global_infos.inputs += prompt_text
# encode prompt text
chunk_encode = []
for idx, chunk in enumerate(global_infos.inputs.split(DEFAULT_IMAGE_TOKEN)):
if idx == 0 and global_infos.n_turn == 0:
cur_encode = tokenizer.encode(chunk)
else:
cur_encode = tokenizer.encode(
chunk, add_special_tokens=False)
chunk_encode.append(cur_encode)
assert len(chunk_encode) == 2
ids = []
for idx, cur_chunk_encode in enumerate(chunk_encode):
ids.extend(cur_chunk_encode)
if idx != len(chunk_encode) - 1:
ids.append(IMAGE_TOKEN_INDEX)
ids = torch.tensor(ids).cuda().unsqueeze(0)
points_mark_embeddings, boxes_mark_embeddings = get_visual_prompts_embeddings(
height=global_infos.image_height,
width=global_infos.image_width, input_ids=ids
)
mark_embeddings = points_mark_embeddings
mark_token_id = omg_llava.mark_token_idx
mm_inputs = prepare_inputs_labels_for_multimodal_with_visual_prompts(
llm=llm, input_ids=ids, pixel_values=pixel_values,
mark_id=mark_token_id,
mark_feats=mark_embeddings, region_id=-9999)
# mm_inputs['inputs_embeds'] = mm_inputs['inputs_embeds'].to(torch.float16)
generate_output = llm.generate(
**mm_inputs,
generation_config=gen_config,
streamer=streamer,
bos_token_id=tokenizer.bos_token_id,
stopping_criteria=stop_criteria,
output_hidden_states=True,
return_dict_in_generate=True
)
predict = tokenizer.decode(
generate_output.sequences[0])
global_infos.inputs += predict
predict = predict.strip()
global_infos.n_turn += 1
global_infos.inputs += sep
if len(generate_output.sequences[0]) >= args.max_new_tokens:
print(
'Remove the memory of history responses, since '
f'it exceeds the length limitation {args.max_new_tokens}.')
global_infos.n_turn = 0
global_infos.inputs = ''
hidden_states = generate_output.hidden_states
last_hidden_states = [item[-1][0] for item in hidden_states]
last_hidden_states = torch.cat(last_hidden_states, dim=0)
seg_hidden_states = get_seg_hidden_states(
last_hidden_states, generate_output.sequences[0][:-1],
seg_id=omg_llava.seg_token_idx
)
# seg_hidden_states = seg_hidden_states.to(torch.float32)
if len(seg_hidden_states) != 0:
seg_hidden_states = projector_text2vision(seg_hidden_states)
batch_idxs = torch.zeros((seg_hidden_states.shape[0],),
dtype=torch.int64).to(seg_hidden_states.device)
pred_masks_list = omg_llava.visual_encoder.forward_llm_seg(seg_hidden_states, batch_idxs)
print((pred_masks_list[-1].flatten(2) > 0).sum(-1))
print(pred_masks_list[-1].shape)
image_mask_show, selected_colors = show_mask_pred(
global_infos.image_for_show, pred_masks_list[-1],
crop_range = (global_infos.sx, global_infos.ex, global_infos.sy, global_infos.ey)
)
else:
image_mask_show = global_infos.image_for_show.crop(
(global_infos.sx, global_infos.sy, global_infos.ex, global_infos.ey))
selected_colors = []
panoptic_show, _ = show_mask_pred(
global_infos.image_for_show, global_infos.panoptic_masks,
crop_range=(global_infos.sx, global_infos.ex, global_infos.sy, global_infos.ey)
)
predict = process_markdown(predict, selected_colors)
# return panoptic_show, image_mask_show, predict
return image_mask_show, predict
def init_models(args):
torch.manual_seed(args.seed)
# parse config
if not osp.isfile(args.config):
try:
args.config = cfgs_name_path[args.config]
except KeyError:
raise FileNotFoundError(f'Cannot find {args.config}')
# load config
cfg = Config.fromfile(args.config)
model_name = cfg.model.type if isinstance(cfg.model.type,
str) else cfg.model.type.__name__
if 'LLaVAModel' or 'OMG' in model_name:
cfg.model.pretrained_pth = None
model = BUILDER.build(cfg.model)
backend = get_file_backend(args.pth_model)
if isinstance(backend, PetrelBackend):
from xtuner.utils.fileio import patch_fileio
with patch_fileio():
state_dict = guess_load_checkpoint(args.pth_model)
else:
state_dict = guess_load_checkpoint(args.pth_model)
model.load_state_dict(state_dict, strict=False)
print(f'Load PTH model from {args.pth_model}')
image_processor = cfg.image_processor
image_processor_type = image_processor['type']
del image_processor['type']
image_processor = image_processor_type(**image_processor)
# build llm
quantization_config = None
load_in_8bit = False
if args.bits == 4:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')
elif args.bits == 8:
load_in_8bit = True
model_kwargs = {
'quantization_config': quantization_config,
'load_in_8bit': load_in_8bit,
'device_map': 'auto',
'offload_folder': args.offload_folder,
'trust_remote_code': True,
'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype]
}
inner_thoughts_open = False
calculate_open = False
solve_open = False
search_open = False
# build llm
llm = model.llm
tokenizer = model.tokenizer
model.cuda()
model.eval()
llm.eval()
visual_encoder = model.visual_encoder
projector = model.projector
projector_text2vision = model.projector_text2vision
visual_encoder.eval()
projector.eval()
projector_text2vision.eval()
return model, llm, tokenizer, image_processor, visual_encoder, projector, projector_text2vision
def get_seg_hidden_states(hidden_states, output_ids, seg_id):
seg_mask = output_ids == seg_id
n_out = len(seg_mask)
print(output_ids)
return hidden_states[-n_out:][seg_mask]
class global_infos:
inputs = ''
n_turn = 0
image_width = 0
image_height = 0
image_for_show = None
pixel_values = None
panoptic_masks = None
sx, sy, ex, ey = 0, 0 ,1024, 1024
point_prompts = []
box_prompts = []
mask_prompts = []
if __name__ == "__main__":
# get parse args and set models
args = parse_args(sys.argv[1:])
omg_llava, llm, tokenizer, image_processor, visual_encoder, projector, projector_text2vision = \
init_models(args)
stop_words = args.stop_words
sep = ''
if args.prompt_template:
template = PROMPT_TEMPLATE[args.prompt_template]
stop_words += template.get('STOP_WORDS', [])
sep = template.get('SEP', '')
stop_criteria = get_stop_criteria(
tokenizer=tokenizer, stop_words=stop_words)
if args.no_streamer:
streamer = None
else:
streamer = TextStreamer(tokenizer, skip_prompt=True)
gen_config = GenerationConfig(
max_new_tokens=args.max_new_tokens,
do_sample=args.temperature > 0,
temperature=args.temperature,
top_p=args.top_p,
top_k=args.top_k,
repetition_penalty=args.repetition_penalty,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
)
demo = gr.Interface(
inference, inputs=[gr.Textbox(lines=1, placeholder=None, label="Text Instruction"), ImagePrompter(
type='filepath', label='Input Image (Please click points or draw bboxes)', interactive=True,
elem_id='image_upload', height=360, visible=True, render=True
),
gr.Checkbox(label="Follow up Question")],
outputs=[
# gr.Image(type="pil", label="Panoptic Segmentation", height=360),
gr.Image(type="pil", label="Output Image"),
gr.Markdown()],
theme=gr.themes.Soft(), allow_flagging="auto", )
demo.queue()
demo.launch(share=True)
|