zhangtao-whu's picture
Upload folder using huggingface_hub
476ac07 verified
raw
history blame
15.8 kB
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import logging
import os
import os.path as osp
from functools import partial
from types import FunctionType
from mmengine.config import Config, DictAction
from mmengine.config.lazy import LazyObject
from mmengine.logging import print_log
from mmengine.registry import RUNNERS
from mmengine.runner import Runner
from mmengine.utils import digit_version
from peft import get_peft_model, prepare_model_for_kbit_training
from transformers import TrainingArguments
from xtuner.configs import cfgs_name_path
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.model.modules import dispatch_modules
from xtuner.model.modules.dispatch import SUPPORT_FLASH2
from xtuner.model.utils import LoadWoInit, find_all_linear_names, traverse_dict
from xtuner.registry import BUILDER, MAP_FUNC
from xtuner.tools.utils import (auto_dtype_of_deepspeed_config,
get_seed_from_checkpoint)
def parse_args():
parser = argparse.ArgumentParser(description='Train LLM')
parser.add_argument('config', help='config file name or path.')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--deepspeed',
type=str,
default=None,
help='the path to the .json file for deepspeed')
parser.add_argument(
'--resume',
type=str,
default=None,
help='specify checkpoint path to be resumed from.')
parser.add_argument(
'--seed', type=int, default=None, help='Random seed for the training')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
return args
def register_function(cfg_dict):
if isinstance(cfg_dict, dict):
for key, value in dict.items(cfg_dict):
if isinstance(value, FunctionType):
value_str = str(value)
if value_str not in MAP_FUNC:
MAP_FUNC.register_module(module=value, name=value_str)
cfg_dict[key] = value_str
else:
register_function(value)
elif isinstance(cfg_dict, (list, tuple)):
for value in cfg_dict:
register_function(value)
def check_cfg(cfg, args):
if getattr(cfg, 'use_varlen_attn',
False) and cfg.train_dataloader.batch_size > 1:
raise NotImplementedError(
f'If utilizing varlen attention, the batch size should be'
f' set to 1, but got {cfg.train_dataloader.batch_size}')
if getattr(cfg, 'use_varlen_attn', False):
sequence_parallel = getattr(cfg, 'sequence_parallel', 1)
max_length = getattr(cfg.train_dataloader.dataset, 'max_length', None)
if max_length is not None:
assert max_length % sequence_parallel == 0, \
('When using varlen attention, `max_length` should be evenly '
'divided by sequence parallel world size, but got '
f'max_length = {max_length} and sequence_parallel = '
f'{sequence_parallel}')
if getattr(cfg, 'sequence_parallel_size', 1) > 1:
assert SUPPORT_FLASH2, ('`flash_attn` is required if you want to use '
'sequence parallel.')
attn_implementation = getattr(cfg.model.llm, 'attn_implementation',
None)
assert (attn_implementation is None or
attn_implementation == 'flash_attention_2'), \
('If you want to use sequence parallel, please set '
'attn_implementation to `flash_attention_2` or do not '
f'set this attribute. Got `{attn_implementation}` .')
if getattr(cfg, 'use_varlen_attn', False):
assert SUPPORT_FLASH2, ('`flash_attn` is required if you set '
'`use_varlen_attn` to True.')
attn_implementation = getattr(cfg.model.llm, 'attn_implementation',
None)
assert (attn_implementation is None or
attn_implementation == 'flash_attention_2'), \
('If you want to set `use_varlen_attn` to True, please set'
' attn_implementation to `flash_attention_2` or do not '
f'set this attribute. Got `{attn_implementation}` .')
if args.deepspeed is None:
assert getattr(cfg, 'sequence_parallel_size', 1) == 1, \
('Sequence parallel training without DeepSpeed lacks validation.'
'Please use DeepSpeed to optimize the training phase by '
'`--deepspeed deepspeed_zero1 (deepspeed_zero2 or '
'deepspeed_zero3)`.')
def main():
args = parse_args()
# parse config
if not osp.isfile(args.config):
try:
args.config = cfgs_name_path[args.config]
except KeyError:
raise FileNotFoundError(f'Cannot find {args.config}')
# load config
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# register FunctionType object in cfg to `MAP_FUNC` Registry and
# change these FunctionType object to str
register_function(cfg._cfg_dict)
check_cfg(cfg, args)
if cfg.get('framework', 'mmengine').lower() == 'huggingface':
# set default training_args
if cfg.get('training_args', None) is None:
cfg.training_args = dict(type=TrainingArguments)
if args.seed is not None:
cfg.training_args.seed = args.seed
# set work_dir
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.training_args.output_dir = args.work_dir
elif cfg.training_args.get('output_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.training_args.output_dir = osp.join(
'./work_dirs',
osp.splitext(osp.basename(args.config))[0])
# enable deepspeed
if args.deepspeed:
if not osp.isfile(args.deepspeed):
try:
args.deepspeed = cfgs_name_path[args.deepspeed]
except KeyError:
raise FileNotFoundError(f'Cannot find {args.deepspeed}')
cfg.training_args.deepspeed = args.deepspeed
if cfg.training_args.get('deepspeed'):
device_map = None
else:
# Data Parallel
device_map = {
'': int(os.environ.get('LOCAL_RANK', args.local_rank))
}
# build training_args
training_args = BUILDER.build(cfg.training_args)
# build model
with LoadWoInit():
cfg.model.device_map = device_map
traverse_dict(cfg.model)
model = BUILDER.build(cfg.model)
model.config.use_cache = False
dispatch_modules(model)
if cfg.get('lora', None):
lora = BUILDER.build(cfg.lora)
model = prepare_model_for_kbit_training(model)
if lora.target_modules is None:
modules = find_all_linear_names(model)
lora.target_modules = modules
model = get_peft_model(model, lora)
# build dataset
train_dataset = BUILDER.build(cfg.train_dataset)
data_collator = partial(default_collate_fn, return_hf_format=True)
# build trainer
trainer = cfg.trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator)
# training
trainer.train(resume_from_checkpoint=args.resume)
trainer.save_state()
trainer.save_model(output_dir=training_args.output_dir)
else:
if args.seed is not None and args.resume is None:
# Use args.seed
cfg.merge_from_dict(dict(randomness=dict(seed=args.seed)))
print_log(
f'Set the random seed to {args.seed}.',
logger='current',
level=logging.INFO)
elif args.resume is not None:
# Use resumed seed
from mmengine.fileio import PetrelBackend, get_file_backend
from xtuner.utils.fileio import patch_fileio
backend = get_file_backend(args.resume)
if isinstance(backend, PetrelBackend):
with patch_fileio():
resumed_seed = get_seed_from_checkpoint(args.resume)
else:
resumed_seed = get_seed_from_checkpoint(args.resume)
cfg.merge_from_dict(dict(randomness=dict(seed=resumed_seed)))
if args.seed is not None and args.seed != resumed_seed:
print_log(
(f'The value of random seed in resume checkpoint '
f'"{args.resume}" is different from the value in '
f'arguments. The resumed seed is {resumed_seed}, while '
f'the input argument seed is {args.seed}. Using the '
f'resumed seed {resumed_seed}.'),
logger='current',
level=logging.WARNING)
else:
print_log(
f'Set the random seed to {resumed_seed}.',
logger='current',
level=logging.INFO)
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
cfg.launcher = args.launcher
# work_dir is determined in this priority:
# CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
if args.deepspeed:
try:
import deepspeed
except ImportError:
raise ImportError(
'deepspeed is not installed properly, please check.')
if digit_version(deepspeed.__version__) < digit_version('0.12.3'):
raise RuntimeError('Please upgrade your DeepSpeed version '
'by using the command pip install '
'`deepspeed>=0.12.3`')
optim_wrapper = cfg.optim_wrapper.type
if optim_wrapper == 'DeepSpeedOptimWrapper':
print_log(
'Deepspeed training is already enabled in your config.',
logger='current',
level=logging.WARNING)
else:
if not osp.isfile(args.deepspeed):
try:
args.deepspeed = cfgs_name_path[args.deepspeed]
except KeyError:
raise FileNotFoundError(
f'Cannot find {args.deepspeed}')
with open(args.deepspeed) as f:
ds_cfg = json.load(f)
ds_grad_accum = ds_cfg.get('gradient_accumulation_steps',
'auto')
mm_grad_accum = cfg.optim_wrapper.get('accumulative_counts', 1)
if ds_grad_accum != 'auto' and ds_grad_accum != mm_grad_accum:
print_log(('Mismatch on gradient_accumulation_steps: '
f'MMEngine {mm_grad_accum}, '
f'Deepspeed {ds_grad_accum}. '
f'Set to {mm_grad_accum}'),
logger='current',
level=logging.WARNING)
grad_accum = mm_grad_accum
ds_train_bs = ds_cfg.get('train_micro_batch_size_per_gpu',
'auto')
mm_train_bs = cfg.train_dataloader.batch_size
if ds_train_bs != 'auto' and ds_train_bs != mm_train_bs:
print_log(
('Mismatch on train_micro_batch_size_per_gpu: '
f'MMEngine {mm_train_bs}, Deepspeed {ds_train_bs}. '
f'Set to {mm_train_bs}'),
logger='current',
level=logging.WARNING)
train_bs = cfg.train_dataloader.batch_size
ds_grad_clip = ds_cfg.get('gradient_clipping', 'auto')
clip_grad = cfg.optim_wrapper.get('clip_grad', None)
if clip_grad and clip_grad.get('max_norm', None) is not None:
mm_max_norm = cfg.optim_wrapper.clip_grad.max_norm
else:
mm_max_norm = 1.0
if ds_grad_clip != 'auto' and ds_grad_clip != mm_max_norm:
print_log(
('Mismatch on gradient_clipping: '
f'MMEngine {mm_max_norm}, Deepspeed {ds_grad_clip}. '
f'Set to {mm_max_norm}'),
logger='current',
level=logging.WARNING)
grad_clip = mm_max_norm
ds_cfg = auto_dtype_of_deepspeed_config(ds_cfg)
exclude_frozen_parameters = True if digit_version(
deepspeed.__version__) >= digit_version('0.10.1') else None
strategy = dict(
type=LazyObject('xtuner.engine', 'DeepSpeedStrategy'),
config=ds_cfg,
gradient_accumulation_steps=grad_accum,
train_micro_batch_size_per_gpu=train_bs,
gradient_clipping=grad_clip,
exclude_frozen_parameters=exclude_frozen_parameters,
sequence_parallel_size=getattr(cfg,
'sequence_parallel_size',
1))
cfg.__setitem__('strategy', strategy)
optim_wrapper = dict(
type='DeepSpeedOptimWrapper',
optimizer=cfg.optim_wrapper.optimizer)
cfg.__setitem__('optim_wrapper', optim_wrapper)
cfg.runner_type = 'FlexibleRunner'
# resume is determined in this priority: resume from > auto_resume
if args.resume is not None:
cfg.resume = True
cfg.load_from = args.resume
# build the runner from config
if 'runner_type' not in cfg:
# build the default runner
runner = Runner.from_cfg(cfg)
else:
# build customized runner from the registry
# if 'runner_type' is set in the cfg
runner = RUNNERS.build(cfg)
# start training
runner.train()
if __name__ == '__main__':
main()