# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import re import warnings import torch from transformers import PreTrainedTokenizerFast, StoppingCriteriaList from transformers.generation.streamers import BaseStreamer from xtuner.utils import StopWordStoppingCriteria def get_base_model(model): if hasattr(model, 'llm'): model = model.llm if 'PeftModel' in model.__class__.__name__: model = model.base_model.model return model def get_streamer(model): # TODO: deprecation, v0.3.0 warnings.warn( ('`get_streamer` is deprecated and will be removed in v0.3.0, ' "use `transformers`'s `TextStreamer` instead."), DeprecationWarning) if model.__class__.__name__ == 'InferenceEngine': model = model.module base_model = get_base_model(model) base_model_name = base_model.__class__.__name__.lower() is_internlm = 'internlm' in base_model_name is_qwen = 'qwen' in base_model_name is_baichuan = 'baichuan' in base_model_name is_chatglm = 'chatglm' in base_model_name no_space = is_internlm or is_qwen or is_baichuan or is_chatglm if no_space: return NoSpaceStreamer else: return DecodeOutputStreamer class DecodeOutputStreamer(BaseStreamer): """Default streamer for HuggingFace models.""" def __init__(self, tokenizer, skip_prompt=True) -> None: super().__init__() # TODO: deprecation, v0.3.0 warnings.warn( '`DecodeOutputStreamer` is deprecated and will be ' 'removed in v0.3.0.', DeprecationWarning) self.tokenizer = tokenizer self.skip_prompt = skip_prompt self.gen_len = 0 if isinstance(tokenizer, PreTrainedTokenizerFast): self.decode = self._decode_with_raw_id self.hex_regex = re.compile(r'^<0x([0-9ABCDEF]+)>$') else: self.decode = self._decode_fallback def _decode_with_raw_id(self, value): """Convert token ids to tokens and decode.""" tok = self.tokenizer._convert_id_to_token(value) if tok.startswith('▁'): # sentencepiece space = ' ' tok = tok[1:] else: space = '' if res := self.hex_regex.match(tok): tok = chr(int(res.group(1), 16)) if tok == '': tok = '\n' return space + tok def _decode_fallback(self, value): """Fallback decoder for non-fast tokenizer.""" tok = self.tokenizer.decode( value, skip_special_tokens=False, clean_up_tokenization_spaces=False) return tok + ' ' def put(self, value): """Callback function to decode token and output to stdout.""" if self.gen_len == 0 and self.skip_prompt: pass else: tok = self.decode(value[0]) print(tok, end='', flush=True) self.gen_len += 1 def end(self): """Callback function to finish generation.""" print('\n') class NoSpaceStreamer(DecodeOutputStreamer): def __init__(self, tokenizer, skip_prompt=True) -> None: BaseStreamer().__init__() # TODO: deprecation, v0.3.0 warnings.warn( '`NoSpaceStreamer` is deprecated and will be ' 'removed in v0.3.0.', DeprecationWarning) self.tokenizer = tokenizer self.skip_prompt = skip_prompt self.gen_len = 0 self.hex_regex = re.compile(r'^<0x([0-9ABCDEF]+)>$') def decode(self, value): tok = self.tokenizer.decode(value) if res := self.hex_regex.match(tok): tok = chr(int(res.group(1), 16)) if tok == '' or tok == '\r': tok = '\n' return tok def get_stop_criteria( tokenizer, stop_words=[], ): stop_criteria = StoppingCriteriaList() for word in stop_words: stop_criteria.append(StopWordStoppingCriteria(tokenizer, word)) return stop_criteria def auto_dtype_of_deepspeed_config(ds_config): if ds_config.get('fp16') and not ds_config.get('bf16'): if ds_config.get('fp16').get('enabled') == 'auto': ds_config['fp16']['enabled'] = torch.cuda.is_available() elif not ds_config.get('fp16') and ds_config.get('bf16'): if ds_config.get('bf16').get('enabled') == 'auto': ds_config['bf16']['enabled'] = torch.cuda.is_bf16_supported() elif ds_config.get('fp16') and ds_config.get('bf16'): if ds_config.get('fp16').get('enabled') == 'auto': ds_config['fp16']['enabled'] = torch.cuda.is_available() if ds_config.get('bf16').get('enabled') == 'auto': ds_config['bf16']['enabled'] = torch.cuda.is_bf16_supported() if (ds_config['fp16']['enabled'] is True and ds_config['bf16']['enabled'] is True): ds_config['fp16']['enabled'] = False ds_config['bf16']['enabled'] = True return ds_config def is_cn_string(s): if re.search('[\u4e00-\u9fff]', s): return True return False def get_seed_from_checkpoint(pth_model): if osp.isfile(pth_model): checkpoint = torch.load(pth_model, map_location='cpu') elif osp.isdir(pth_model): try: from deepspeed.utils.zero_to_fp32 import get_model_state_files except ImportError: raise ImportError( 'The provided PTH model appears to be a DeepSpeed checkpoint. ' 'However, DeepSpeed library is not detected in current ' 'environment. This suggests that DeepSpeed may not be ' 'installed or is incorrectly configured. Please verify your ' 'setup.') filename = get_model_state_files(pth_model)[0] checkpoint = torch.load(filename, map_location='cpu') else: raise FileNotFoundError(f'Cannot find {pth_model}') return checkpoint['meta']['seed']