Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,933 Bytes
ef427a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
import logging
import os
from collections import OrderedDict
from functools import partial
import torch
import re
import math
from typing import Optional
import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention
from diffusers.utils import deprecate
from diffusers.models.embeddings import apply_rotary_emb
def scaled_dot_product_attention_atten_weight_only(
query, key, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None
) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight
def apply_rope(xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def masking_fn(hidden_states, kwargs):
lamb = kwargs["lamb"].view(1, kwargs["lamb"].shape[0], 1, 1)
if kwargs.get("masking", None) == "sigmoid":
mask = torch.sigmoid(lamb)
elif kwargs.get("masking", None) == "binary":
mask = lamb
elif kwargs.get("masking", None) == "continues2binary":
# TODO: this might cause potential issue as it hard threshold at 0
mask = (lamb > 0).float()
elif kwargs.get("masking", None) == "no_masking":
mask = torch.ones_like(lamb)
else:
raise NotImplementedError
epsilon = kwargs.get("epsilon", 0.0)
hidden_states = hidden_states * mask + torch.randn_like(hidden_states) * epsilon * (
1 - mask
)
return hidden_states
class FluxAttnProcessor2_0_Masking:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
batch_size, _, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(
encoder_hidden_states_query_proj
)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(
encoder_hidden_states_key_proj
)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
hidden_states = F.scaled_dot_product_attention(
query, key, value, dropout_p=0.0, is_causal=False
)
if kwargs.get("lamb", None) is not None:
hidden_states = masking_fn(hidden_states, kwargs)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
class AttnProcessor2_0_Masking:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
):
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = (
"The `scale` argument is deprecated and will be ignored. "
"Please remove it, as passing it will raise an error "
"in the future. `scale` should directly be passed while "
"calling the underlying pipeline component i.e., via "
"`cross_attention_kwargs`."
)
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1]
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(
encoder_hidden_states
)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if getattr(attn, "norm_q", None) is not None:
query = attn.norm_q(query)
if getattr(attn, "norm_k", None) is not None:
key = attn.norm_k(key)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
if kwargs.get("return_attention", True):
# add the attention output from F.scaled_dot_product_attention
attn_weight = scaled_dot_product_attention_atten_weight_only(
query, key, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states_aft_attention_ops = hidden_states.clone()
attn_weight_old = attn_weight.to(hidden_states.device).clone()
else:
hidden_states_aft_attention_ops = None
attn_weight_old = None
# masking for the hidden_states after the attention ops
if kwargs.get("lamb", None) is not None:
hidden_states = masking_fn(hidden_states, kwargs)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states, hidden_states_aft_attention_ops, attn_weight_old
class BaseCrossAttentionHooker:
def __init__(
self,
pipeline,
regex,
dtype,
head_num_filter,
masking,
model_name,
attn_name,
use_log,
eps,
):
self.pipeline = pipeline
# unet for SD2 SDXL, transformer for SD3, FLUX DIT
self.net = pipeline.unet if hasattr(pipeline, "unet") else pipeline.transformer
self.model_name = model_name
self.module_heads = OrderedDict()
self.masking = masking
self.hook_dict = {}
self.regex = regex
self.dtype = dtype
self.head_num_filter = head_num_filter
self.attn_name = attn_name
self.logger = logging.getLogger(__name__)
self.use_log = use_log # use log parameter to control hard_discrete
self.eps = eps
def add_hooks_to_cross_attention(self, hook_fn: callable):
"""
Add forward hooks to every cross attention
:param hook_fn: a callable to be added to torch nn module as a hook
:return:
"""
total_hooks = 0
for name, module in self.net.named_modules():
name_last_word = name.split(".")[-1]
if self.attn_name in name_last_word:
if re.match(self.regex, name):
hook_fn = partial(hook_fn, name=name)
hook = module.register_forward_hook(hook_fn, with_kwargs=True)
self.hook_dict[name] = hook
self.module_heads[name] = module.heads
self.logger.info(
f"Adding hook to {name}, module.heads: {module.heads}"
)
total_hooks += 1
self.logger.info(f"Total hooks added: {total_hooks}")
def clear_hooks(self):
"""clear all hooks"""
for hook in self.hook_dict.values():
hook.remove()
self.hook_dict.clear()
class CrossAttentionExtractionHook(BaseCrossAttentionHooker):
def __init__(
self,
pipeline,
dtype,
head_num_filter,
masking,
dst,
regex=None,
epsilon=0.0,
binary=False,
return_attention=False,
model_name="sdxl",
attn_name="attn",
use_log=False,
eps=1e-6,
):
super().__init__(
pipeline,
regex,
dtype,
head_num_filter,
masking=masking,
model_name=model_name,
attn_name=attn_name,
use_log=use_log,
eps=eps,
)
if model_name == "sdxl":
self.attention_processor = AttnProcessor2_0_Masking()
elif model_name == "flux":
self.attention_processor = FluxAttnProcessor2_0_Masking()
self.lambs = []
self.lambs_module_names = []
self.cross_attn = []
self.hook_counter = 0
self.device = (
self.pipeline.unet.device
if hasattr(self.pipeline, "unet")
else self.pipeline.transformer.device
)
self.dst = dst
self.epsilon = epsilon
self.binary = binary
self.return_attention = return_attention
self.model_name = model_name
def clean_cross_attn(self):
self.cross_attn = []
def validate_dst(self):
if os.path.exists(self.dst):
raise ValueError(f"Destination {self.dst} already exists")
def save(self, name: str = None):
if name is not None:
dst = os.path.join(os.path.dirname(self.dst), name)
else:
dst = self.dst
dst_dir = os.path.dirname(dst)
if not os.path.exists(dst_dir):
self.logger.info(f"Creating directory {dst_dir}")
os.makedirs(dst_dir)
torch.save(self.lambs, dst)
@property
def get_lambda_block_names(self):
return self.lambs_module_names
def load(self, device, threshold=2.5):
if os.path.exists(self.dst):
self.logger.info(f"loading lambda from {self.dst}")
self.lambs = torch.load(self.dst, weights_only=True, map_location=device)
if self.binary:
# set binary masking for each lambda by using clamp
self.lambs = [
(torch.relu(lamb - threshold) > 0).float() for lamb in self.lambs
]
else:
self.logger.info("skipping loading, training from scratch")
def binarize(self, scope: str, ratio: float):
assert scope in ["local", "global"], "scope must be either local or global"
assert (
not self.binary
), "binarization is not supported when using binary mask already"
if scope == "local":
# Local binarization
for i, lamb in enumerate(self.lambs):
num_heads = lamb.size(0)
num_activate_heads = int(num_heads * ratio)
# Sort the lambda values with stable sorting to maintain order for equal values
sorted_lamb, sorted_indices = torch.sort(
lamb, descending=True, stable=True
)
# Find the threshold value
threshold = sorted_lamb[num_activate_heads - 1]
# Create a mask based on the sorted indices
mask = torch.zeros_like(lamb)
mask[sorted_indices[:num_activate_heads]] = 1.0
# Binarize the lambda based on the threshold and the mask
self.lambs[i] = torch.where(
lamb > threshold, torch.ones_like(lamb), mask
)
else:
# Global binarization
all_lambs = torch.cat([lamb.flatten() for lamb in self.lambs])
num_total = all_lambs.numel()
num_activate = int(num_total * ratio)
# Sort all lambda values globally with stable sorting
sorted_lambs, sorted_indices = torch.sort(
all_lambs, descending=True, stable=True
)
# Find the global threshold value
threshold = sorted_lambs[num_activate - 1]
# Create a global mask based on the sorted indices
global_mask = torch.zeros_like(all_lambs)
global_mask[sorted_indices[:num_activate]] = 1.0
# Binarize all lambdas based on the global threshold and mask
start_idx = 0
for i in range(len(self.lambs)):
end_idx = start_idx + self.lambs[i].numel()
lamb_mask = global_mask[start_idx:end_idx].reshape(self.lambs[i].shape)
self.lambs[i] = torch.where(
self.lambs[i] > threshold, torch.ones_like(self.lambs[i]), lamb_mask
)
start_idx = end_idx
self.binary = True
def bizarize_threshold(self, threshold: float):
"""
Binarize lambda values based on a predefined threshold.
:param threshold: The threshold value for binarization
"""
assert (
not self.binary
), "Binarization is not supported when using binary mask already"
for i in range(len(self.lambs)):
self.lambs[i] = (self.lambs[i] >= threshold).float()
self.binary = True
def get_cross_attn_extraction_hook(self, init_value=1.0):
"""get a hook function to extract cross attention"""
# the reason to use a function inside a function is to save the extracted cross attention
def hook_fn(module, args, kwargs, output, name):
# initialize lambda with acual head dim in the first run
if self.lambs[self.hook_counter] is None:
self.lambs[self.hook_counter] = (
torch.ones(
module.heads, device=self.pipeline.device, dtype=self.dtype
)
* init_value
)
# Only set requires_grad to True when the head number is larger than the filter
if self.head_num_filter <= module.heads:
self.lambs[self.hook_counter].requires_grad = True
# load attn lambda module name for logging
self.lambs_module_names[self.hook_counter] = name
if self.model_name == "sdxl":
hidden_states, _, attention_output = self.attention_processor(
module,
args[0],
encoder_hidden_states=kwargs["encoder_hidden_states"],
attention_mask=kwargs["attention_mask"],
lamb=self.lambs[self.hook_counter],
masking=self.masking,
epsilon=self.epsilon,
return_attention=self.return_attention,
use_log=self.use_log,
eps=self.eps,
)
if attention_output is not None:
self.cross_attn.append(attention_output)
self.hook_counter += 1
self.hook_counter %= len(self.lambs)
return hidden_states
elif self.model_name == "flux":
encoder_hidden_states = kwargs.get("encoder_hidden_states", None)
# flux has two different attention processors, FluxSingleAttnProcessor and FluxAttnProcessor
if "single" in name:
hidden_states = self.attention_processor(
module,
hidden_states=kwargs.get("hidden_states", None),
encoder_hidden_states=encoder_hidden_states,
attention_mask=kwargs.get("attention_mask", None),
image_rotary_emb=kwargs.get("image_rotary_emb", None),
lamb=self.lambs[self.hook_counter],
masking=self.masking,
epsilon=self.epsilon,
use_log=self.use_log,
eps=self.eps,
)
self.hook_counter += 1
self.hook_counter %= len(self.lambs)
return hidden_states
else:
hidden_states, encoder_hidden_states = self.attention_processor(
module,
hidden_states=kwargs.get("hidden_states", None),
encoder_hidden_states=encoder_hidden_states,
attention_mask=kwargs.get("attention_mask", None),
image_rotary_emb=kwargs.get("image_rotary_emb", None),
lamb=self.lambs[self.hook_counter],
masking=self.masking,
epsilon=self.epsilon,
use_log=self.use_log,
eps=self.eps,
)
self.hook_counter += 1
self.hook_counter %= len(self.lambs)
return hidden_states, encoder_hidden_states
return hook_fn
def add_hooks(self, init_value=1.0):
hook_fn = self.get_cross_attn_extraction_hook(init_value)
self.add_hooks_to_cross_attention(hook_fn)
# initialize the lambda
self.lambs = [None] * len(self.module_heads)
# initialize the lambda module names
self.lambs_module_names = [None] * len(self.module_heads)
def get_process_cross_attn_result(self, text_seq_length, timestep: int = -1):
if isinstance(timestep, str):
timestep = int(timestep)
# num_lambda_block contains lambda (head masking)
num_lambda_block = len(self.lambs)
# get the start and end position of the timestep
start_pos = timestep * num_lambda_block
end_pos = (timestep + 1) * num_lambda_block
if end_pos > len(self.cross_attn):
raise ValueError(f"timestep {timestep} is out of range")
# list[cross_attn_map] num_layer x [batch, num_heads, seq_vis_tokens, seq_text_tokens]
attn_maps = self.cross_attn[start_pos:end_pos]
def heatmap(attn_list, attn_idx, head_idx, text_idx):
# only select second element in the tuple (with text guided attention)
# layer_idx, 1, head_idx, seq_vis_tokens, seq_text_tokens
map = attn_list[attn_idx][1][head_idx][:][:, text_idx]
# get the size of the heatmap
size = int(map.shape[0] ** 0.5)
map = map.view(size, size, 1)
data = map.cpu().float().numpy()
return data
output_dict = {}
for lambda_block_idx, lambda_block_name in zip(
range(num_lambda_block), self.lambs_module_names
):
data_list = []
for head_idx in range(len(self.lambs[lambda_block_idx])):
for token_idx in range(text_seq_length):
# number of heatmap is equal to the number of tokens in the text sequence X number of heads
data_list.append(
heatmap(attn_maps, lambda_block_idx, head_idx, token_idx)
)
output_dict[lambda_block_name] = {
"attn_map": data_list,
"lambda": self.lambs[lambda_block_idx],
}
return output_dict
|