File size: 8,902 Bytes
bb7ee19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import logging
import os
from collections import OrderedDict
from functools import partial

import diffusers
import torch
from torch import nn

import re


class FeedForwardHooker:
    def __init__(
        self,
        pipeline: nn.Module,
        regex: str,
        dtype: torch.dtype,
        masking: str,
        dst: str,
        epsilon: float = 0.0,
        eps: float = 1e-6,
        use_log: bool = False,
        binary: bool = False,
    ):
        self.pipeline = pipeline
        self.net = pipeline.unet if hasattr(pipeline, "unet") else pipeline.transformer
        self.logger = logging.getLogger(__name__)
        self.dtype = dtype
        self.regex = regex
        self.hook_dict = {}
        self.masking = masking
        self.dst = dst
        self.epsilon = epsilon
        self.eps = eps
        self.use_log = use_log
        self.lambs = []
        self.lambs_module_names = []  # store the module names for each lambda block
        self.hook_counter = 0
        self.module_neurons = OrderedDict()
        self.binary = (
            binary  # default, need to discuss if we need to keep this attribute or not
        )

    def add_hooks_to_ff(self, hook_fn: callable):
        total_hooks = 0
        for name, module in self.net.named_modules():
            name_last_word = name.split(".")[-1]
            if "ff" in name_last_word:
                if re.match(self.regex, name):
                    hook_fn_with_name = partial(hook_fn, name=name)
                    actual_module = module.net[0]
                    hook = actual_module.register_forward_hook(
                        hook_fn_with_name, with_kwargs=True
                    )
                    self.hook_dict[name] = hook

                    if isinstance(
                        actual_module, diffusers.models.activations.GEGLU
                    ):  # geglu
                        # due to the GEGLU chunking, we need to divide by 2
                        self.module_neurons[name] = actual_module.proj.out_features // 2
                    elif isinstance(
                        actual_module, diffusers.models.activations.GELU
                    ):  # gelu
                        self.module_neurons[name] = actual_module.proj.out_features
                    else:
                        raise NotImplementedError(
                            f"Module {name} is not implemented, please check"
                        )
                    self.logger.info(
                        f"Adding hook to {name}, neurons: {self.module_neurons[name]}"
                    )
                    total_hooks += 1
        self.logger.info(f"Total hooks added: {total_hooks}")
        return self.hook_dict

    def add_hooks(self, init_value=1.0):
        hook_fn = self.get_ff_masking_hook(init_value)
        self.add_hooks_to_ff(hook_fn)
        # initialize the lambda
        self.lambs = [None] * len(self.hook_dict)
        # initialize the lambda module names
        self.lambs_module_names = [None] * len(self.hook_dict)

    def clear_hooks(self):
        """clear all hooks"""
        for hook in self.hook_dict.values():
            hook.remove()
        self.hook_dict.clear()

    def save(self, name: str = None):
        if name is not None:
            dst = os.path.join(os.path.dirname(self.dst), name)
        else:
            dst = self.dst
        dst_dir = os.path.dirname(dst)
        if not os.path.exists(dst_dir):
            self.logger.info(f"Creating directory {dst_dir}")
            os.makedirs(dst_dir)
        torch.save(self.lambs, dst)

    @property
    def get_lambda_block_names(self):
        return self.lambs_module_names

    def load(self, device, threshold=2.5):
        if os.path.exists(self.dst):
            self.logger.info(f"loading lambda from {self.dst}")
            self.lambs = torch.load(self.dst, weights_only=True, map_location=device)
            if self.binary:
                # set binary masking for each lambda by using clamp
                self.lambs = [
                    (torch.relu(lamb - threshold) > 0).float() for lamb in self.lambs
                ]
            else:
                self.lambs = [torch.clamp(lamb, min=0.0) for lamb in self.lambs]
            # self.lambs_module_names = [None for _ in self.lambs]
        else:
            self.logger.info("skipping loading, training from scratch")

    def binarize(self, scope: str, ratio: float):
        assert scope in ["local", "global"], "scope must be either local or global"
        assert (
            not self.binary
        ), "binarization is not supported when using binary mask already"
        if scope == "local":
            # Local binarization
            for i, lamb in enumerate(self.lambs):
                num_heads = lamb.size(0)
                num_activate_heads = int(num_heads * ratio)
                # Sort the lambda values with stable sorting to maintain order for equal values
                sorted_lamb, sorted_indices = torch.sort(
                    lamb, descending=True, stable=True
                )
                # Find the threshold value
                threshold = sorted_lamb[num_activate_heads - 1]
                # Create a mask based on the sorted indices
                mask = torch.zeros_like(lamb)
                mask[sorted_indices[:num_activate_heads]] = 1.0
                # Binarize the lambda based on the threshold and the mask
                self.lambs[i] = torch.where(
                    lamb > threshold, torch.ones_like(lamb), mask
                )
        else:
            # Global binarization
            all_lambs = torch.cat([lamb.flatten() for lamb in self.lambs])
            num_total = all_lambs.numel()
            num_activate = int(num_total * ratio)
            # Sort all lambda values globally with stable sorting
            sorted_lambs, sorted_indices = torch.sort(
                all_lambs, descending=True, stable=True
            )
            # Find the global threshold value
            threshold = sorted_lambs[num_activate - 1]
            # Create a global mask based on the sorted indices
            global_mask = torch.zeros_like(all_lambs)
            global_mask[sorted_indices[:num_activate]] = 1.0
            # Binarize all lambdas based on the global threshold and mask
            start_idx = 0
            for i in range(len(self.lambs)):
                end_idx = start_idx + self.lambs[i].numel()
                lamb_mask = global_mask[start_idx:end_idx].reshape(self.lambs[i].shape)
                self.lambs[i] = torch.where(
                    self.lambs[i] > threshold, torch.ones_like(self.lambs[i]), lamb_mask
                )
                start_idx = end_idx
        self.binary = True

    @staticmethod
    def masking_fn(hidden_states, **kwargs):
        hidden_states_dtype = hidden_states.dtype
        lamb = kwargs["lamb"].view(1, 1, kwargs["lamb"].shape[0])
        if kwargs.get("masking", None) == "sigmoid":
            mask = torch.sigmoid(lamb)
        elif kwargs.get("masking", None) == "binary":
            mask = lamb
        elif kwargs.get("masking", None) == "continues2binary":
            # TODO: this might cause potential issue as it hard threshold at 0
            mask = (lamb > 0).float()
        elif kwargs.get("masking", None) == "no_masking":
            mask = torch.ones_like(lamb)
        else:
            raise NotImplementedError
        epsilon = kwargs.get("epsilon", 0.0)
        hidden_states = hidden_states * mask + torch.randn_like(
            hidden_states
        ) * epsilon * (1 - mask)
        return hidden_states.to(hidden_states_dtype)

    def get_ff_masking_hook(self, init_value=1.0):
        """
        Get a hook function to mask feed forward layer
        """

        def hook_fn(module, args, kwargs, output, name):
            # initialize lambda with acual head dim in the first run
            if self.lambs[self.hook_counter] is None:
                self.lambs[self.hook_counter] = (
                    torch.ones(
                        self.module_neurons[name],
                        device=self.pipeline.device,
                        dtype=self.dtype,
                    )
                    * init_value
                )
                self.lambs[self.hook_counter].requires_grad = True
                # load ff lambda module name for logging
                self.lambs_module_names[self.hook_counter] = name

            # perform masking
            output = self.masking_fn(
                output,
                masking=self.masking,
                lamb=self.lambs[self.hook_counter],
                epsilon=self.epsilon,
                eps=self.eps,
                use_log=self.use_log,
            )
            self.hook_counter += 1
            self.hook_counter %= len(self.lambs)
            return output

        return hook_fn