File size: 17,627 Bytes
82d824b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import logging
import os
from collections import OrderedDict
from functools import partial

import torch

import re

import math
from typing import Optional

import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention
from diffusers.utils import deprecate


def scaled_dot_product_attention_atten_weight_only(
    query, key, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None
) -> torch.Tensor:
    L, S = query.size(-2), key.size(-2)
    scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
    attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)
    if is_causal:
        assert attn_mask is None
        temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)

    if attn_mask is not None:
        if attn_mask.dtype == torch.bool:
            attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
        else:
            attn_bias += attn_mask
    attn_weight = query @ key.transpose(-2, -1) * scale_factor
    attn_weight += attn_bias
    attn_weight = torch.softmax(attn_weight, dim=-1)
    attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
    return attn_weight


def apply_rope(xq, xk, freqs_cis):
    xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
    xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
    xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
    xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
    return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)


def masking_fn(hidden_states, kwargs):
    lamb = kwargs["lamb"].view(1, kwargs["lamb"].shape[0], 1, 1)
    if kwargs.get("masking", None) == "sigmoid":
        mask = torch.sigmoid(lamb)
    elif kwargs.get("masking", None) == "binary":
        mask = lamb
    elif kwargs.get("masking", None) == "continues2binary":
        # TODO: this might cause potential issue as it hard threshold at 0
        mask = (lamb > 0).float()
    elif kwargs.get("masking", None) == "no_masking":
        mask = torch.ones_like(lamb)
    else:
        raise NotImplementedError
    epsilon = kwargs.get("epsilon", 0.0)
    hidden_states = hidden_states * mask + torch.randn_like(hidden_states) * epsilon * (1 - mask)
    return hidden_states


class AttnProcessor2_0_Masking:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        *args,
        **kwargs,
    ):
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = (
                "The `scale` argument is deprecated and will be ignored. "
                "Please remove it, as passing it will raise an error "
                "in the future. `scale` should directly be passed while "
                "calling the underlying pipeline component i.e., via "
                "`cross_attention_kwargs`."
            )
            deprecate("scale", "1.0.0", deprecation_message)

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if getattr(attn, "norm_q", None) is not None:
            query = attn.norm_q(query)
        
        if getattr(attn, "norm_k", None) is not None:
            key = attn.norm_k(key)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        if kwargs.get("return_attention", True):
            # add the attention output from F.scaled_dot_product_attention
            attn_weight = scaled_dot_product_attention_atten_weight_only(
                query, key, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )
            hidden_states_aft_attention_ops = hidden_states.clone()
            attn_weight_old = attn_weight.to(hidden_states.device).clone()
        else:
            hidden_states_aft_attention_ops = None
            attn_weight_old = None

        # masking for the hidden_states after the attention ops
        if kwargs.get("lamb", None) is not None:
            hidden_states = masking_fn(hidden_states, kwargs)

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states, hidden_states_aft_attention_ops, attn_weight_old

class BaseCrossAttentionHooker:
    def __init__(self, pipeline, regex, dtype, head_num_filter, masking, model_name, attn_name, use_log, eps):
        self.pipeline = pipeline
        # unet for SD2 SDXL, transformer for SD3, FLUX DIT
        self.net = pipeline.unet if hasattr(pipeline, "unet") else pipeline.transformer
        self.model_name = model_name
        self.module_heads = OrderedDict()
        self.masking = masking
        self.hook_dict = {}
        self.regex = regex
        self.dtype = dtype
        self.head_num_filter = head_num_filter
        self.attn_name = attn_name
        self.logger = logging.getLogger(__name__)
        self.use_log = use_log  # use log parameter to control hard_discrete
        self.eps = eps

    def add_hooks_to_cross_attention(self, hook_fn: callable):
        """
        Add forward hooks to every cross attention
        :param hook_fn: a callable to be added to torch nn module as a hook
        :return:
        """
        total_hooks = 0
        for name, module in self.net.named_modules():
            name_last_word = name.split(".")[-1]
            if self.attn_name in name_last_word:
                if re.match(self.regex, name):
                    hook_fn = partial(hook_fn, name=name)
                    hook = module.register_forward_hook(hook_fn, with_kwargs=True)
                    self.hook_dict[name] = hook
                    self.module_heads[name] = module.heads
                    self.logger.info(f"Adding hook to {name}, module.heads: {module.heads}")
                    total_hooks += 1
        self.logger.info(f"Total hooks added: {total_hooks}")

    def clear_hooks(self):
        """clear all hooks"""
        for hook in self.hook_dict.values():
            hook.remove()
        self.hook_dict.clear()


class CrossAttentionExtractionHook(BaseCrossAttentionHooker):
    def __init__(
        self,
        pipeline,
        dtype,
        head_num_filter,
        masking,
        dst,
        regex=None,
        epsilon=0.0,
        binary=False,
        return_attention=False,
        model_name="sdxl",
        attn_name="attn",
        use_log=False,
        eps=1e-6,
    ):
        super().__init__(
            pipeline,
            regex,
            dtype,
            head_num_filter,
            masking=masking,
            model_name=model_name,
            attn_name=attn_name,
            use_log=use_log,
            eps=eps,
        )
        self.attention_processor = AttnProcessor2_0_Masking()
        self.lambs = []
        self.lambs_module_names = []
        self.cross_attn = []
        self.hook_counter = 0
        self.device = self.pipeline.unet.device if hasattr(self.pipeline, "unet") else self.pipeline.transformer.device
        self.dst = dst
        self.epsilon = epsilon
        self.binary = binary
        self.return_attention = return_attention
        self.model_name = model_name

    def clean_cross_attn(self):
        self.cross_attn = []

    def validate_dst(self):
        if os.path.exists(self.dst):
            raise ValueError(f"Destination {self.dst} already exists")

    def save(self, name: str = None):
        if name is not None:
            dst = os.path.join(os.path.dirname(self.dst), name)
        else:
            dst = self.dst
        dst_dir = os.path.dirname(dst)
        if not os.path.exists(dst_dir):
            self.logger.info(f"Creating directory {dst_dir}")
            os.makedirs(dst_dir)
        torch.save(self.lambs, dst)

    @property
    def get_lambda_block_names(self):
        return self.lambs_module_names

    def load(self, device, threshold=2.5):
        if os.path.exists(self.dst):
            self.logger.info(f"loading lambda from {self.dst}")
            self.lambs = torch.load(self.dst, weights_only=True, map_location=device)
            if self.binary:
                # set binary masking for each lambda by using clamp
                self.lambs = [(torch.relu(lamb - threshold) > 0).float() for lamb in self.lambs]
        else:
            self.logger.info("skipping loading, training from scratch")

    def binarize(self, scope: str, ratio: float):
        assert scope in ["local", "global"], "scope must be either local or global"
        assert not self.binary, "binarization is not supported when using binary mask already"
        if scope == "local":
            # Local binarization
            for i, lamb in enumerate(self.lambs):
                num_heads = lamb.size(0)
                num_activate_heads = int(num_heads * ratio)
                # Sort the lambda values with stable sorting to maintain order for equal values
                sorted_lamb, sorted_indices = torch.sort(lamb, descending=True, stable=True)
                # Find the threshold value
                threshold = sorted_lamb[num_activate_heads - 1]
                # Create a mask based on the sorted indices
                mask = torch.zeros_like(lamb)
                mask[sorted_indices[:num_activate_heads]] = 1.0
                # Binarize the lambda based on the threshold and the mask
                self.lambs[i] = torch.where(lamb > threshold, torch.ones_like(lamb), mask)
        else:
            # Global binarization
            all_lambs = torch.cat([lamb.flatten() for lamb in self.lambs])
            num_total = all_lambs.numel()
            num_activate = int(num_total * ratio)
            # Sort all lambda values globally with stable sorting
            sorted_lambs, sorted_indices = torch.sort(all_lambs, descending=True, stable=True)
            # Find the global threshold value
            threshold = sorted_lambs[num_activate - 1]
            # Create a global mask based on the sorted indices
            global_mask = torch.zeros_like(all_lambs)
            global_mask[sorted_indices[:num_activate]] = 1.0
            # Binarize all lambdas based on the global threshold and mask
            start_idx = 0
            for i in range(len(self.lambs)):
                end_idx = start_idx + self.lambs[i].numel()
                lamb_mask = global_mask[start_idx:end_idx].reshape(self.lambs[i].shape)
                self.lambs[i] = torch.where(self.lambs[i] > threshold, torch.ones_like(self.lambs[i]), lamb_mask)
                start_idx = end_idx
        self.binary = True

    def bizarize_threshold(self, threshold: float):
        """
        Binarize lambda values based on a predefined threshold.
        :param threshold: The threshold value for binarization
        """
        assert not self.binary, "Binarization is not supported when using binary mask already"

        for i in range(len(self.lambs)):
            self.lambs[i] = (self.lambs[i] >= threshold).float()

        self.binary = True

    def get_cross_attn_extraction_hook(self, init_value=1.0):
        """get a hook function to extract cross attention"""

        # the reason to use a function inside a function is to save the extracted cross attention
        def hook_fn(module, args, kwargs, output, name):
            # initialize lambda with acual head dim in the first run
            if self.lambs[self.hook_counter] is None:
                self.lambs[self.hook_counter] = (
                    torch.ones(module.heads, device=self.pipeline.device, dtype=self.dtype) * init_value
                )
                # Only set requires_grad to True when the head number is larger than the filter
                if self.head_num_filter <= module.heads:
                    self.lambs[self.hook_counter].requires_grad = True

                # load attn lambda module name for logging
                self.lambs_module_names[self.hook_counter] = name

            hidden_states, _, attention_output = self.attention_processor(
                module,
                args[0],
                encoder_hidden_states=kwargs["encoder_hidden_states"],
                attention_mask=kwargs["attention_mask"],
                lamb=self.lambs[self.hook_counter],
                masking=self.masking,
                epsilon=self.epsilon,
                return_attention=self.return_attention,
                use_log=self.use_log,
                eps=self.eps,
            )
            if attention_output is not None:
                self.cross_attn.append(attention_output)
            self.hook_counter += 1
            self.hook_counter %= len(self.lambs)
            return hidden_states

        return hook_fn

    def add_hooks(self, init_value=1.0):
        hook_fn = self.get_cross_attn_extraction_hook(init_value)
        self.add_hooks_to_cross_attention(hook_fn)
        # initialize the lambda
        self.lambs = [None] * len(self.module_heads)
        # initialize the lambda module names
        self.lambs_module_names = [None] * len(self.module_heads)

    def get_process_cross_attn_result(self, text_seq_length, timestep: int = -1):
        if isinstance(timestep, str):
            timestep = int(timestep)
        # num_lambda_block contains lambda (head masking)
        num_lambda_block = len(self.lambs)

        # get the start and end position of the timestep
        start_pos = timestep * num_lambda_block
        end_pos = (timestep + 1) * num_lambda_block
        if end_pos > len(self.cross_attn):
            raise ValueError(f"timestep {timestep} is out of range")

        # list[cross_attn_map] num_layer x [batch, num_heads, seq_vis_tokens, seq_text_tokens]
        attn_maps = self.cross_attn[start_pos:end_pos]

        def heatmap(attn_list, attn_idx, head_idx, text_idx):
            # only select second element in the tuple (with text guided attention)
            # layer_idx, 1, head_idx, seq_vis_tokens, seq_text_tokens
            map = attn_list[attn_idx][1][head_idx][:][:, text_idx]
            # get the size of the heatmap
            size = int(map.shape[0] ** 0.5)
            map = map.view(size, size, 1)
            data = map.cpu().float().numpy()
            return data

        output_dict = {}
        for lambda_block_idx, lambda_block_name in zip(range(num_lambda_block), self.lambs_module_names):
            data_list = []
            for head_idx in range(len(self.lambs[lambda_block_idx])):
                for token_idx in range(text_seq_length):
                    # number of heatmap is equal to the number of tokens in the text sequence X number of heads
                    data_list.append(heatmap(attn_maps, lambda_block_idx, head_idx, token_idx))
            output_dict[lambda_block_name] = {"attn_map": data_list, "lambda": self.lambs[lambda_block_idx]}
        return output_dict