EcoDiff / src /cross_attn_hook.py
zhangyang-0123's picture
add ecodiff demo
82d824b
import logging
import os
from collections import OrderedDict
from functools import partial
import torch
import re
import math
from typing import Optional
import torch
import torch.nn.functional as F
from diffusers.models.attention_processor import Attention
from diffusers.utils import deprecate
def scaled_dot_product_attention_atten_weight_only(
query, key, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None
) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight
def apply_rope(xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def masking_fn(hidden_states, kwargs):
lamb = kwargs["lamb"].view(1, kwargs["lamb"].shape[0], 1, 1)
if kwargs.get("masking", None) == "sigmoid":
mask = torch.sigmoid(lamb)
elif kwargs.get("masking", None) == "binary":
mask = lamb
elif kwargs.get("masking", None) == "continues2binary":
# TODO: this might cause potential issue as it hard threshold at 0
mask = (lamb > 0).float()
elif kwargs.get("masking", None) == "no_masking":
mask = torch.ones_like(lamb)
else:
raise NotImplementedError
epsilon = kwargs.get("epsilon", 0.0)
hidden_states = hidden_states * mask + torch.randn_like(hidden_states) * epsilon * (1 - mask)
return hidden_states
class AttnProcessor2_0_Masking:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
):
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = (
"The `scale` argument is deprecated and will be ignored. "
"Please remove it, as passing it will raise an error "
"in the future. `scale` should directly be passed while "
"calling the underlying pipeline component i.e., via "
"`cross_attention_kwargs`."
)
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if getattr(attn, "norm_q", None) is not None:
query = attn.norm_q(query)
if getattr(attn, "norm_k", None) is not None:
key = attn.norm_k(key)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
if kwargs.get("return_attention", True):
# add the attention output from F.scaled_dot_product_attention
attn_weight = scaled_dot_product_attention_atten_weight_only(
query, key, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states_aft_attention_ops = hidden_states.clone()
attn_weight_old = attn_weight.to(hidden_states.device).clone()
else:
hidden_states_aft_attention_ops = None
attn_weight_old = None
# masking for the hidden_states after the attention ops
if kwargs.get("lamb", None) is not None:
hidden_states = masking_fn(hidden_states, kwargs)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states, hidden_states_aft_attention_ops, attn_weight_old
class BaseCrossAttentionHooker:
def __init__(self, pipeline, regex, dtype, head_num_filter, masking, model_name, attn_name, use_log, eps):
self.pipeline = pipeline
# unet for SD2 SDXL, transformer for SD3, FLUX DIT
self.net = pipeline.unet if hasattr(pipeline, "unet") else pipeline.transformer
self.model_name = model_name
self.module_heads = OrderedDict()
self.masking = masking
self.hook_dict = {}
self.regex = regex
self.dtype = dtype
self.head_num_filter = head_num_filter
self.attn_name = attn_name
self.logger = logging.getLogger(__name__)
self.use_log = use_log # use log parameter to control hard_discrete
self.eps = eps
def add_hooks_to_cross_attention(self, hook_fn: callable):
"""
Add forward hooks to every cross attention
:param hook_fn: a callable to be added to torch nn module as a hook
:return:
"""
total_hooks = 0
for name, module in self.net.named_modules():
name_last_word = name.split(".")[-1]
if self.attn_name in name_last_word:
if re.match(self.regex, name):
hook_fn = partial(hook_fn, name=name)
hook = module.register_forward_hook(hook_fn, with_kwargs=True)
self.hook_dict[name] = hook
self.module_heads[name] = module.heads
self.logger.info(f"Adding hook to {name}, module.heads: {module.heads}")
total_hooks += 1
self.logger.info(f"Total hooks added: {total_hooks}")
def clear_hooks(self):
"""clear all hooks"""
for hook in self.hook_dict.values():
hook.remove()
self.hook_dict.clear()
class CrossAttentionExtractionHook(BaseCrossAttentionHooker):
def __init__(
self,
pipeline,
dtype,
head_num_filter,
masking,
dst,
regex=None,
epsilon=0.0,
binary=False,
return_attention=False,
model_name="sdxl",
attn_name="attn",
use_log=False,
eps=1e-6,
):
super().__init__(
pipeline,
regex,
dtype,
head_num_filter,
masking=masking,
model_name=model_name,
attn_name=attn_name,
use_log=use_log,
eps=eps,
)
self.attention_processor = AttnProcessor2_0_Masking()
self.lambs = []
self.lambs_module_names = []
self.cross_attn = []
self.hook_counter = 0
self.device = self.pipeline.unet.device if hasattr(self.pipeline, "unet") else self.pipeline.transformer.device
self.dst = dst
self.epsilon = epsilon
self.binary = binary
self.return_attention = return_attention
self.model_name = model_name
def clean_cross_attn(self):
self.cross_attn = []
def validate_dst(self):
if os.path.exists(self.dst):
raise ValueError(f"Destination {self.dst} already exists")
def save(self, name: str = None):
if name is not None:
dst = os.path.join(os.path.dirname(self.dst), name)
else:
dst = self.dst
dst_dir = os.path.dirname(dst)
if not os.path.exists(dst_dir):
self.logger.info(f"Creating directory {dst_dir}")
os.makedirs(dst_dir)
torch.save(self.lambs, dst)
@property
def get_lambda_block_names(self):
return self.lambs_module_names
def load(self, device, threshold=2.5):
if os.path.exists(self.dst):
self.logger.info(f"loading lambda from {self.dst}")
self.lambs = torch.load(self.dst, weights_only=True, map_location=device)
if self.binary:
# set binary masking for each lambda by using clamp
self.lambs = [(torch.relu(lamb - threshold) > 0).float() for lamb in self.lambs]
else:
self.logger.info("skipping loading, training from scratch")
def binarize(self, scope: str, ratio: float):
assert scope in ["local", "global"], "scope must be either local or global"
assert not self.binary, "binarization is not supported when using binary mask already"
if scope == "local":
# Local binarization
for i, lamb in enumerate(self.lambs):
num_heads = lamb.size(0)
num_activate_heads = int(num_heads * ratio)
# Sort the lambda values with stable sorting to maintain order for equal values
sorted_lamb, sorted_indices = torch.sort(lamb, descending=True, stable=True)
# Find the threshold value
threshold = sorted_lamb[num_activate_heads - 1]
# Create a mask based on the sorted indices
mask = torch.zeros_like(lamb)
mask[sorted_indices[:num_activate_heads]] = 1.0
# Binarize the lambda based on the threshold and the mask
self.lambs[i] = torch.where(lamb > threshold, torch.ones_like(lamb), mask)
else:
# Global binarization
all_lambs = torch.cat([lamb.flatten() for lamb in self.lambs])
num_total = all_lambs.numel()
num_activate = int(num_total * ratio)
# Sort all lambda values globally with stable sorting
sorted_lambs, sorted_indices = torch.sort(all_lambs, descending=True, stable=True)
# Find the global threshold value
threshold = sorted_lambs[num_activate - 1]
# Create a global mask based on the sorted indices
global_mask = torch.zeros_like(all_lambs)
global_mask[sorted_indices[:num_activate]] = 1.0
# Binarize all lambdas based on the global threshold and mask
start_idx = 0
for i in range(len(self.lambs)):
end_idx = start_idx + self.lambs[i].numel()
lamb_mask = global_mask[start_idx:end_idx].reshape(self.lambs[i].shape)
self.lambs[i] = torch.where(self.lambs[i] > threshold, torch.ones_like(self.lambs[i]), lamb_mask)
start_idx = end_idx
self.binary = True
def bizarize_threshold(self, threshold: float):
"""
Binarize lambda values based on a predefined threshold.
:param threshold: The threshold value for binarization
"""
assert not self.binary, "Binarization is not supported when using binary mask already"
for i in range(len(self.lambs)):
self.lambs[i] = (self.lambs[i] >= threshold).float()
self.binary = True
def get_cross_attn_extraction_hook(self, init_value=1.0):
"""get a hook function to extract cross attention"""
# the reason to use a function inside a function is to save the extracted cross attention
def hook_fn(module, args, kwargs, output, name):
# initialize lambda with acual head dim in the first run
if self.lambs[self.hook_counter] is None:
self.lambs[self.hook_counter] = (
torch.ones(module.heads, device=self.pipeline.device, dtype=self.dtype) * init_value
)
# Only set requires_grad to True when the head number is larger than the filter
if self.head_num_filter <= module.heads:
self.lambs[self.hook_counter].requires_grad = True
# load attn lambda module name for logging
self.lambs_module_names[self.hook_counter] = name
hidden_states, _, attention_output = self.attention_processor(
module,
args[0],
encoder_hidden_states=kwargs["encoder_hidden_states"],
attention_mask=kwargs["attention_mask"],
lamb=self.lambs[self.hook_counter],
masking=self.masking,
epsilon=self.epsilon,
return_attention=self.return_attention,
use_log=self.use_log,
eps=self.eps,
)
if attention_output is not None:
self.cross_attn.append(attention_output)
self.hook_counter += 1
self.hook_counter %= len(self.lambs)
return hidden_states
return hook_fn
def add_hooks(self, init_value=1.0):
hook_fn = self.get_cross_attn_extraction_hook(init_value)
self.add_hooks_to_cross_attention(hook_fn)
# initialize the lambda
self.lambs = [None] * len(self.module_heads)
# initialize the lambda module names
self.lambs_module_names = [None] * len(self.module_heads)
def get_process_cross_attn_result(self, text_seq_length, timestep: int = -1):
if isinstance(timestep, str):
timestep = int(timestep)
# num_lambda_block contains lambda (head masking)
num_lambda_block = len(self.lambs)
# get the start and end position of the timestep
start_pos = timestep * num_lambda_block
end_pos = (timestep + 1) * num_lambda_block
if end_pos > len(self.cross_attn):
raise ValueError(f"timestep {timestep} is out of range")
# list[cross_attn_map] num_layer x [batch, num_heads, seq_vis_tokens, seq_text_tokens]
attn_maps = self.cross_attn[start_pos:end_pos]
def heatmap(attn_list, attn_idx, head_idx, text_idx):
# only select second element in the tuple (with text guided attention)
# layer_idx, 1, head_idx, seq_vis_tokens, seq_text_tokens
map = attn_list[attn_idx][1][head_idx][:][:, text_idx]
# get the size of the heatmap
size = int(map.shape[0] ** 0.5)
map = map.view(size, size, 1)
data = map.cpu().float().numpy()
return data
output_dict = {}
for lambda_block_idx, lambda_block_name in zip(range(num_lambda_block), self.lambs_module_names):
data_list = []
for head_idx in range(len(self.lambs[lambda_block_idx])):
for token_idx in range(text_seq_length):
# number of heatmap is equal to the number of tokens in the text sequence X number of heads
data_list.append(heatmap(attn_maps, lambda_block_idx, head_idx, token_idx))
output_dict[lambda_block_name] = {"attn_map": data_list, "lambda": self.lambs[lambda_block_idx]}
return output_dict