Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
# Load your custom classification model | |
model_path = "kia_mlp_classification_pokemon2.weights.h5" | |
model_path = "kia_mlp_classification_pokemon2.keras" | |
model = tf.keras.models.load_model(model_path) | |
labels = ['Pikachu', 'Psyduck', 'Pidgey'] | |
# Define classification function | |
def predict_classification(image): | |
# Preprocess image | |
image = Image.fromarray(image.astype('uint8'), 'RGB') # Convert numpy array to RGB PIL image | |
image = image.resize((224, 224)) # Resize the image to 224x224 | |
image = np.array(image) / 255.0 # Scale pixel values to [0, 1] | |
# Predict | |
prediction = model.predict(np.array([image])) # Make sure to add a batch dimension | |
confidence = {labels[i]: float(np.round(prediction[0][i], 2)) for i in range(3)} | |
return confidence | |
# Create Gradio interface | |
input_image = gr.Image() | |
output_text = gr.Textbox(label="Predicted Value") | |
interface = gr.Interface( | |
fn=predict_classification, | |
inputs=input_image, | |
outputs=gr.Label(), | |
examples=["./pokemon/pikachu/i1.png", "./pokemon/psyduck/p2.png", "./pokemon/pidgey/pi1.png", "./pokemon/pikachu/i2.png", "./pokemon/psyduck/p1.jpg", "./pokemon/pidgey/pi2.jpg","./pokemon/psyduck/p3.jpg"], | |
description="Upload or select an image to classify as Pikachu, Psyduck, or Pidgey." | |
) | |
interface.launch() |