import gradio as gr import tensorflow as tf import numpy as np from PIL import Image # Load your custom classification model model_path = "kia_mlp_classification_pokemon2.weights.h5" model_path = "kia_mlp_classification_pokemon2.keras" model = tf.keras.models.load_model(model_path) labels = ['Pikachu', 'Psyduck', 'Pidgey'] # Define classification function def predict_classification(image): # Preprocess image image = Image.fromarray(image.astype('uint8'), 'RGB') # Convert numpy array to RGB PIL image image = image.resize((224, 224)) # Resize the image to 224x224 image = np.array(image) / 255.0 # Scale pixel values to [0, 1] # Predict prediction = model.predict(np.array([image])) # Make sure to add a batch dimension confidence = {labels[i]: float(np.round(prediction[0][i], 2)) for i in range(3)} return confidence # Create Gradio interface input_image = gr.Image() output_text = gr.Textbox(label="Predicted Value") interface = gr.Interface( fn=predict_classification, inputs=input_image, outputs=gr.Label(), examples=["./pokemon/pikachu/i1.png", "./pokemon/psyduck/p2.png", "./pokemon/pidgey/pi1.png", "./pokemon/pikachu/i2.png", "./pokemon/psyduck/p1.jpg", "./pokemon/pidgey/pi2.jpg","./pokemon/psyduck/p3.jpg"], description="Upload or select an image to classify as Pikachu, Psyduck, or Pidgey." ) interface.launch()