zhzluke96 commited on
Commit
b44532e
·
1 Parent(s): 4c19a5a
modules/SynthesizeSegments.py CHANGED
@@ -55,11 +55,10 @@ def to_number(value, t, default=0):
55
 
56
 
57
  class SynthesizeSegments:
58
- batch_default_spk_seed = rng.np_rng()
59
- batch_default_infer_seed = rng.np_rng()
60
-
61
  def __init__(self, batch_size: int = 8):
62
  self.batch_size = batch_size
 
 
63
 
64
  def segment_to_generate_params(self, segment: Dict[str, Any]) -> Dict[str, Any]:
65
  if segment.get("params", None) is not None:
 
55
 
56
 
57
  class SynthesizeSegments:
 
 
 
58
  def __init__(self, batch_size: int = 8):
59
  self.batch_size = batch_size
60
+ self.batch_default_spk_seed = rng.np_rng()
61
+ self.batch_default_infer_seed = rng.np_rng()
62
 
63
  def segment_to_generate_params(self, segment: Dict[str, Any]) -> Dict[str, Any]:
64
  if segment.get("params", None) is not None:
modules/utils/SeedContext.py CHANGED
@@ -37,9 +37,9 @@ class SeedContext:
37
  assert is_numeric(seed), "Seed must be an number."
38
 
39
  try:
40
- self.seed = int(np.clip(int(seed), -1, 2**32 - 1))
41
  except Exception as e:
42
- raise ValueError("Seed must be an integer.")
43
 
44
  self.seed = seed
45
  self.state = None
 
37
  assert is_numeric(seed), "Seed must be an number."
38
 
39
  try:
40
+ self.seed = int(np.clip(int(seed), -1, 2**32 - 1, out=None, dtype=np.int64))
41
  except Exception as e:
42
+ raise ValueError(f"Seed must be an integer, but: {type(seed)}")
43
 
44
  self.seed = seed
45
  self.state = None
modules/utils/rng.py CHANGED
@@ -1,15 +1,14 @@
1
  import numpy as np
2
  import torch
3
- import random
4
 
5
- TORCH_RNG_MAX = -0x8000000000000000
6
- TORCH_RNG_MIN = 0xFFFFFFFFFFFFFFFF
7
 
8
  NP_RNG_MAX = np.iinfo(np.uint32).max
9
  NP_RNG_MIN = 0
10
 
11
 
12
- def troch_rng(seed: int):
13
  torch.manual_seed(seed)
14
  random_float = torch.empty(1).uniform_().item()
15
  torch_rn = int(random_float * (TORCH_RNG_MAX - TORCH_RNG_MIN) + TORCH_RNG_MIN)
@@ -30,6 +29,7 @@ def np_rng():
30
  if __name__ == "__main__":
31
  import random
32
 
 
33
  s1 = np_rng()
34
- s2 = troch_rng(s1)
35
  print(f"s1 {s1} => s2: {s2}")
 
1
  import numpy as np
2
  import torch
 
3
 
4
+ TORCH_RNG_MAX = 0xFFFF_FFFF_FFFF_FFFF
5
+ TORCH_RNG_MIN = -0x8000_0000_0000_0000
6
 
7
  NP_RNG_MAX = np.iinfo(np.uint32).max
8
  NP_RNG_MIN = 0
9
 
10
 
11
+ def torch_rng(seed: int):
12
  torch.manual_seed(seed)
13
  random_float = torch.empty(1).uniform_().item()
14
  torch_rn = int(random_float * (TORCH_RNG_MAX - TORCH_RNG_MIN) + TORCH_RNG_MIN)
 
29
  if __name__ == "__main__":
30
  import random
31
 
32
+ print(TORCH_RNG_MIN, TORCH_RNG_MAX)
33
  s1 = np_rng()
34
+ s2 = torch_rng(s1)
35
  print(f"s1 {s1} => s2: {s2}")
webui.py CHANGED
@@ -148,7 +148,7 @@ def tts_generate(
148
  prompt1 = prompt1 or params.get("prompt1", "")
149
  prompt2 = prompt2 or params.get("prompt2", "")
150
 
151
- infer_seed = np.clip(infer_seed, -1, 2**32 - 1)
152
  infer_seed = int(infer_seed)
153
 
154
  if not disable_normalize:
 
148
  prompt1 = prompt1 or params.get("prompt1", "")
149
  prompt2 = prompt2 or params.get("prompt2", "")
150
 
151
+ infer_seed = np.clip(infer_seed, -1, 2**32 - 1, out=None, dtype=np.int64)
152
  infer_seed = int(infer_seed)
153
 
154
  if not disable_normalize: