Spaces:
Running
on
Zero
Running
on
Zero
QinOwen
commited on
Commit
·
2ad9d00
1
Parent(s):
5098655
fix-bug
Browse files
VADER-VideoCrafter/scripts/main/train_t2v_lora.py
CHANGED
@@ -29,7 +29,6 @@ from hpsv2.src.open_clip import create_model_and_transforms, get_tokenizer
|
|
29 |
import hpsv2
|
30 |
import bitsandbytes as bnb
|
31 |
from accelerate import Accelerator
|
32 |
-
from accelerate.logging import get_logger
|
33 |
from accelerate.utils import gather_object
|
34 |
import torch.distributed as dist
|
35 |
import logging
|
@@ -43,16 +42,6 @@ import cv2
|
|
43 |
# st = ipdb.set_trace
|
44 |
|
45 |
|
46 |
-
logger = get_logger(__name__, log_level="INFO") # get logger for current module
|
47 |
-
|
48 |
-
def create_logging(logging, logger, accelerator):
|
49 |
-
logging.basicConfig(
|
50 |
-
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
51 |
-
datefmt="%m/%d/%Y %H:%M:%S",
|
52 |
-
level=logging.INFO,
|
53 |
-
)
|
54 |
-
logger.info(accelerator.state, main_process_only=False)
|
55 |
-
|
56 |
def create_output_folders(output_dir, run_name):
|
57 |
out_dir = os.path.join(output_dir, run_name)
|
58 |
os.makedirs(out_dir, exist_ok=True)
|
@@ -567,12 +556,162 @@ def should_sample(global_step, validation_steps, is_sample_preview):
|
|
567 |
and is_sample_preview
|
568 |
|
569 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
570 |
def run_training(args, model, **kwargs):
|
571 |
## ---------------------step 1: accelerator setup---------------------------
|
572 |
accelerator = Accelerator( # Initialize Accelerator
|
573 |
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
574 |
mixed_precision=args.mixed_precision,
|
575 |
-
project_dir=args.project_dir
|
|
|
|
|
576 |
)
|
577 |
output_dir = args.project_dir
|
578 |
|
@@ -584,6 +723,8 @@ def run_training(args, model, **kwargs):
|
|
584 |
lora_dropout=0.01,
|
585 |
)
|
586 |
|
|
|
|
|
587 |
peft_model = peft.get_peft_model(model, config)
|
588 |
|
589 |
peft_model.print_trainable_parameters()
|
@@ -599,13 +740,24 @@ def run_training(args, model, **kwargs):
|
|
599 |
# load the pretrained LoRA model
|
600 |
peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
|
601 |
|
602 |
-
|
603 |
-
|
604 |
-
|
|
|
|
|
|
|
605 |
# Inference Step: only do inference and save the videos. Skip this step if it is training
|
606 |
# ==================================================================
|
607 |
if args.inference_only:
|
608 |
peft_model = accelerator.prepare(peft_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
609 |
# sample shape
|
610 |
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
|
611 |
# latent noise shape
|
@@ -618,7 +770,7 @@ def run_training(args, model, **kwargs):
|
|
618 |
channels = peft_model.channels
|
619 |
|
620 |
## Inference step 2: run Inference over samples
|
621 |
-
|
622 |
|
623 |
first_epoch = 0
|
624 |
global_step = 0
|
@@ -627,10 +779,6 @@ def run_training(args, model, **kwargs):
|
|
627 |
## Inference Step 3: generate new validation videos
|
628 |
with torch.no_grad():
|
629 |
|
630 |
-
# set random seed for each process
|
631 |
-
random.seed(args.seed)
|
632 |
-
torch.manual_seed(args.seed)
|
633 |
-
|
634 |
prompts_all = [args.prompt_str]
|
635 |
val_prompt = list(prompts_all)
|
636 |
|
@@ -670,6 +818,8 @@ def run_training(args, model, **kwargs):
|
|
670 |
batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \
|
671 |
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
|
672 |
|
|
|
|
|
673 |
# batch_samples: b,samples,c,t,h,w
|
674 |
dir_name = os.path.join(output_dir, "samples")
|
675 |
# filenames should be related to the gpu index
|
@@ -699,7 +849,7 @@ def run_training(args, model, **kwargs):
|
|
699 |
dir_name.extend(results_gathered[i]["dir_name"])
|
700 |
prompts.extend(results_gathered[i]["prompt"])
|
701 |
|
702 |
-
|
703 |
|
704 |
# # batch size is 1, so only one video is generated
|
705 |
|
@@ -715,12 +865,9 @@ def run_training(args, model, **kwargs):
|
|
715 |
torch.cuda.empty_cache()
|
716 |
gc.collect()
|
717 |
|
718 |
-
return video_path
|
719 |
|
720 |
-
# end of inference only, training script continues
|
721 |
-
# ==================================================================
|
722 |
|
723 |
-
|
724 |
def setup_model():
|
725 |
parser = get_parser()
|
726 |
args = parser.parse_args()
|
@@ -747,6 +894,7 @@ def setup_model():
|
|
747 |
|
748 |
|
749 |
print("Model setup complete!")
|
|
|
750 |
return model
|
751 |
|
752 |
|
@@ -777,3 +925,8 @@ def main_fn(prompt, lora_model, lora_rank, seed=200, height=320, width=512, unco
|
|
777 |
|
778 |
return video_path
|
779 |
|
|
|
|
|
|
|
|
|
|
|
|
29 |
import hpsv2
|
30 |
import bitsandbytes as bnb
|
31 |
from accelerate import Accelerator
|
|
|
32 |
from accelerate.utils import gather_object
|
33 |
import torch.distributed as dist
|
34 |
import logging
|
|
|
42 |
# st = ipdb.set_trace
|
43 |
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def create_output_folders(output_dir, run_name):
|
46 |
out_dir = os.path.join(output_dir, run_name)
|
47 |
os.makedirs(out_dir, exist_ok=True)
|
|
|
556 |
and is_sample_preview
|
557 |
|
558 |
|
559 |
+
# def run_training(args, model, **kwargs):
|
560 |
+
# ## ---------------------step 1: setup---------------------------
|
561 |
+
# output_dir = args.project_dir
|
562 |
+
|
563 |
+
|
564 |
+
# # step 2.1: add LoRA using peft
|
565 |
+
# config = peft.LoraConfig(
|
566 |
+
# r=args.lora_rank,
|
567 |
+
# target_modules=["to_k", "to_v", "to_q"], # only diffusion_model has these modules
|
568 |
+
# lora_dropout=0.01,
|
569 |
+
# )
|
570 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
571 |
+
|
572 |
+
|
573 |
+
# model = model.to(device)
|
574 |
+
# peft_model = peft.get_peft_model(model, config)
|
575 |
+
|
576 |
+
|
577 |
+
|
578 |
+
# # load the pretrained LoRA model
|
579 |
+
# if args.lora_ckpt_path != "Base Model":
|
580 |
+
# if args.lora_ckpt_path == "huggingface-hps-aesthetic": # download the pretrained LoRA model from huggingface
|
581 |
+
# snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
|
582 |
+
# args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_hps_aesthetic.pt'
|
583 |
+
# elif args.lora_ckpt_path == "huggingface-pickscore": # download the pretrained LoRA model from huggingface
|
584 |
+
# snapshot_download(repo_id='zheyangqin/VADER', local_dir ='VADER-VideoCrafter/checkpoints/pretrained_lora')
|
585 |
+
# args.lora_ckpt_path = 'VADER-VideoCrafter/checkpoints/pretrained_lora/vader_videocrafter_pickscore.pt'
|
586 |
+
# # load the pretrained LoRA model
|
587 |
+
# peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
|
588 |
+
|
589 |
+
|
590 |
+
# # peft_model.first_stage_model.to(device)
|
591 |
+
|
592 |
+
# peft_model.eval()
|
593 |
+
|
594 |
+
# print("device is: ", device)
|
595 |
+
# print("precision: ", peft_model.dtype)
|
596 |
+
# # precision of first_stage_model
|
597 |
+
# print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
|
598 |
+
# print("peft_model device: ", peft_model.device)
|
599 |
+
|
600 |
+
# # Inference Step: only do inference and save the videos. Skip this step if it is training
|
601 |
+
# # ==================================================================
|
602 |
+
# # sample shape
|
603 |
+
# assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
|
604 |
+
# # latent noise shape
|
605 |
+
# h, w = args.height // 8, args.width // 8
|
606 |
+
|
607 |
+
# frames = peft_model.temporal_length if args.frames < 0 else args.frames
|
608 |
+
# channels = peft_model.channels
|
609 |
+
|
610 |
+
# ## Inference step 2: run Inference over samples
|
611 |
+
# print("***** Running inference *****")
|
612 |
+
|
613 |
+
|
614 |
+
# ## Inference Step 3: generate new validation videos
|
615 |
+
# with torch.no_grad():
|
616 |
+
|
617 |
+
# # set random seed for each process
|
618 |
+
# random.seed(args.seed)
|
619 |
+
# torch.manual_seed(args.seed)
|
620 |
+
|
621 |
+
# prompts_all = [args.prompt_str]
|
622 |
+
# val_prompt = list(prompts_all)
|
623 |
+
|
624 |
+
# assert len(val_prompt) == 1, "Error: only one prompt is allowed for inference in gradio!"
|
625 |
+
|
626 |
+
# # store output of generations in dict
|
627 |
+
# results=dict(filenames=[],dir_name=[], prompt=[])
|
628 |
+
|
629 |
+
# # Inference Step 3.1: forward pass
|
630 |
+
# batch_size = len(val_prompt)
|
631 |
+
# noise_shape = [batch_size, channels, frames, h, w]
|
632 |
+
|
633 |
+
# fps = torch.tensor([args.fps]*batch_size).to(device).long()
|
634 |
+
|
635 |
+
# prompts = val_prompt
|
636 |
+
# if isinstance(prompts, str):
|
637 |
+
# prompts = [prompts]
|
638 |
+
|
639 |
+
# # mix precision
|
640 |
+
|
641 |
+
# if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
|
642 |
+
# text_emb = peft_model.module.get_learned_conditioning(prompts).to(device)
|
643 |
+
# else:
|
644 |
+
# text_emb = peft_model.get_learned_conditioning(prompts).to(device)
|
645 |
+
|
646 |
+
# if args.mode == 'base':
|
647 |
+
# cond = {"c_crossattn": [text_emb], "fps": fps}
|
648 |
+
# else: # TODO: implement i2v mode training in the future
|
649 |
+
# raise NotImplementedError
|
650 |
+
|
651 |
+
# # Inference Step 3.2: inference, batch_samples shape: batch, <samples>, c, t, h, w
|
652 |
+
# # no backprop_mode=args.backprop_mode because it is inference process
|
653 |
+
# batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \
|
654 |
+
# args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
|
655 |
+
|
656 |
+
# print("batch_samples dtype: ", batch_samples.dtype)
|
657 |
+
# print("batch_samples device: ", batch_samples.device)
|
658 |
+
# # batch_samples: b,samples,c,t,h,w
|
659 |
+
# dir_name = os.path.join(output_dir, "samples")
|
660 |
+
# # filenames should be related to the gpu index
|
661 |
+
# # get timestamps for filenames to avoid overwriting
|
662 |
+
# # current_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
663 |
+
# filenames = [f"temporal"] # only one sample
|
664 |
+
# # if dir_name is not exists, create it
|
665 |
+
# os.makedirs(dir_name, exist_ok=True)
|
666 |
+
|
667 |
+
# save_videos(batch_samples, dir_name, filenames, fps=args.savefps)
|
668 |
+
|
669 |
+
# results["filenames"].extend(filenames)
|
670 |
+
# results["dir_name"].extend([dir_name]*len(filenames))
|
671 |
+
# results["prompt"].extend(prompts)
|
672 |
+
# results=[ results ] # transform to list, otherwise gather_object() will not collect correctly
|
673 |
+
|
674 |
+
# # Inference Step 3.3: collect inference results and save the videos to wandb
|
675 |
+
# # collect inference results from all the GPUs
|
676 |
+
# results_gathered=gather_object(results)
|
677 |
+
|
678 |
+
# filenames = []
|
679 |
+
# dir_name = []
|
680 |
+
# prompts = []
|
681 |
+
# for i in range(len(results_gathered)):
|
682 |
+
# filenames.extend(results_gathered[i]["filenames"])
|
683 |
+
# dir_name.extend(results_gathered[i]["dir_name"])
|
684 |
+
# prompts.extend(results_gathered[i]["prompt"])
|
685 |
+
|
686 |
+
# print("Validation sample saved!")
|
687 |
+
|
688 |
+
# # # batch size is 1, so only one video is generated
|
689 |
+
|
690 |
+
# # video = get_videos(batch_samples)
|
691 |
+
|
692 |
+
# # # read the video from the saved path
|
693 |
+
# video_path = os.path.join(dir_name[0], filenames[0]+".mp4")
|
694 |
+
|
695 |
+
|
696 |
+
|
697 |
+
# # release memory
|
698 |
+
# del batch_samples
|
699 |
+
# torch.cuda.empty_cache()
|
700 |
+
# gc.collect()
|
701 |
+
|
702 |
+
# return video_path
|
703 |
+
|
704 |
+
# # end of inference only, training script continues
|
705 |
+
# # ==================================================================
|
706 |
+
|
707 |
def run_training(args, model, **kwargs):
|
708 |
## ---------------------step 1: accelerator setup---------------------------
|
709 |
accelerator = Accelerator( # Initialize Accelerator
|
710 |
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
711 |
mixed_precision=args.mixed_precision,
|
712 |
+
project_dir=args.project_dir,
|
713 |
+
device_placement=True,
|
714 |
+
cpu=False
|
715 |
)
|
716 |
output_dir = args.project_dir
|
717 |
|
|
|
723 |
lora_dropout=0.01,
|
724 |
)
|
725 |
|
726 |
+
model = model.to(accelerator.device)
|
727 |
+
|
728 |
peft_model = peft.get_peft_model(model, config)
|
729 |
|
730 |
peft_model.print_trainable_parameters()
|
|
|
740 |
# load the pretrained LoRA model
|
741 |
peft.set_peft_model_state_dict(peft_model, torch.load(args.lora_ckpt_path))
|
742 |
|
743 |
+
|
744 |
+
print("precision: ", peft_model.dtype)
|
745 |
+
# precision of first_stage_model
|
746 |
+
print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
|
747 |
+
print("peft_model device: ", peft_model.device)
|
748 |
+
|
749 |
# Inference Step: only do inference and save the videos. Skip this step if it is training
|
750 |
# ==================================================================
|
751 |
if args.inference_only:
|
752 |
peft_model = accelerator.prepare(peft_model)
|
753 |
+
|
754 |
+
|
755 |
+
print("precision: ", peft_model.dtype)
|
756 |
+
# precision of first_stage_model
|
757 |
+
print("precision of first_stage_model: ", peft_model.first_stage_model.dtype)
|
758 |
+
print("peft_model device: ", peft_model.device)
|
759 |
+
|
760 |
+
|
761 |
# sample shape
|
762 |
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
|
763 |
# latent noise shape
|
|
|
770 |
channels = peft_model.channels
|
771 |
|
772 |
## Inference step 2: run Inference over samples
|
773 |
+
print("***** Running inference *****")
|
774 |
|
775 |
first_epoch = 0
|
776 |
global_step = 0
|
|
|
779 |
## Inference Step 3: generate new validation videos
|
780 |
with torch.no_grad():
|
781 |
|
|
|
|
|
|
|
|
|
782 |
prompts_all = [args.prompt_str]
|
783 |
val_prompt = list(prompts_all)
|
784 |
|
|
|
818 |
batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \
|
819 |
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
|
820 |
|
821 |
+
print("batch_samples dtype: ", batch_samples.dtype)
|
822 |
+
print("batch_samples device: ", batch_samples.device)
|
823 |
# batch_samples: b,samples,c,t,h,w
|
824 |
dir_name = os.path.join(output_dir, "samples")
|
825 |
# filenames should be related to the gpu index
|
|
|
849 |
dir_name.extend(results_gathered[i]["dir_name"])
|
850 |
prompts.extend(results_gathered[i]["prompt"])
|
851 |
|
852 |
+
print("Validation sample saved!")
|
853 |
|
854 |
# # batch size is 1, so only one video is generated
|
855 |
|
|
|
865 |
torch.cuda.empty_cache()
|
866 |
gc.collect()
|
867 |
|
868 |
+
return video_path
|
869 |
|
|
|
|
|
870 |
|
|
|
871 |
def setup_model():
|
872 |
parser = get_parser()
|
873 |
args = parser.parse_args()
|
|
|
894 |
|
895 |
|
896 |
print("Model setup complete!")
|
897 |
+
print("model dtype: ", model.dtype)
|
898 |
return model
|
899 |
|
900 |
|
|
|
925 |
|
926 |
return video_path
|
927 |
|
928 |
+
# if main
|
929 |
+
if __name__ == "__main__":
|
930 |
+
model = setup_model()
|
931 |
+
|
932 |
+
main_fn("a person walking on the street", "huggingface-hps-aesthetic", 16, 200, 320, 512, 12, 25, 1.0, 24, 10, model=model)
|
app.py
CHANGED
@@ -22,7 +22,7 @@ examples = [
|
|
22 |
|
23 |
model = setup_model()
|
24 |
|
25 |
-
@spaces.GPU(duration=
|
26 |
def gradio_main_fn(prompt, lora_model, lora_rank, seed, height, width, unconditional_guidance_scale, ddim_steps, ddim_eta,
|
27 |
frames, savefps):
|
28 |
global model
|
@@ -203,16 +203,16 @@ with gr.Blocks(css=custom_css) as demo:
|
|
203 |
seed = gr.Slider(minimum=0, maximum=65536, label="Seed", step = 1, value=200)
|
204 |
|
205 |
with gr.Row():
|
206 |
-
height = gr.Slider(minimum=0, maximum=
|
207 |
-
width = gr.Slider(minimum=0, maximum=
|
208 |
|
209 |
with gr.Row():
|
210 |
frames = gr.Slider(minimum=0, maximum=50, label="Frames", step = 1, value=24)
|
211 |
-
savefps = gr.Slider(minimum=0, maximum=
|
212 |
|
213 |
|
214 |
with gr.Row():
|
215 |
-
DDIM_Steps = gr.Slider(minimum=0, maximum=
|
216 |
unconditional_guidance_scale = gr.Slider(minimum=0, maximum=50, label="Guidance Scale", step = 0.1, value=12.0)
|
217 |
DDIM_Eta = gr.Slider(minimum=0, maximum=1, label="DDIM Eta", step = 0.01, value=1.0)
|
218 |
|
|
|
22 |
|
23 |
model = setup_model()
|
24 |
|
25 |
+
@spaces.GPU(duration=120)
|
26 |
def gradio_main_fn(prompt, lora_model, lora_rank, seed, height, width, unconditional_guidance_scale, ddim_steps, ddim_eta,
|
27 |
frames, savefps):
|
28 |
global model
|
|
|
203 |
seed = gr.Slider(minimum=0, maximum=65536, label="Seed", step = 1, value=200)
|
204 |
|
205 |
with gr.Row():
|
206 |
+
height = gr.Slider(minimum=0, maximum=512, label="Height", step = 16, value=384)
|
207 |
+
width = gr.Slider(minimum=0, maximum=512, label="Width", step = 16, value=512)
|
208 |
|
209 |
with gr.Row():
|
210 |
frames = gr.Slider(minimum=0, maximum=50, label="Frames", step = 1, value=24)
|
211 |
+
savefps = gr.Slider(minimum=0, maximum=30, label="Save FPS", step = 1, value=10)
|
212 |
|
213 |
|
214 |
with gr.Row():
|
215 |
+
DDIM_Steps = gr.Slider(minimum=0, maximum=50, label="DDIM Steps", step = 1, value=25)
|
216 |
unconditional_guidance_scale = gr.Slider(minimum=0, maximum=50, label="Guidance Scale", step = 0.1, value=12.0)
|
217 |
DDIM_Eta = gr.Slider(minimum=0, maximum=1, label="DDIM Eta", step = 0.01, value=1.0)
|
218 |
|
gradio_cached_examples/32/indices.csv
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
0
|
|
|
|
gradio_cached_examples/32/log.csv
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
component 0,flag,username,timestamp
|
2 |
-
"{""video"": {""path"": ""gradio_cached_examples/32/component 0/fd156c6a458fa048724e/temporal.mp4"", ""url"": ""/file=/tmp/gradio/4bc133becbc469de8da700250f7f7df1103c6f56/temporal.mp4"", ""size"": null, ""orig_name"": ""temporal.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, ""subtitles"": null}",,,2024-07-19 00:00:10.509808
|
|
|
|
|
|
gradio_cached_examples/34/indices.csv
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
0
|
|
|
|
gradio_cached_examples/34/log.csv
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
component 0,flag,username,timestamp
|
2 |
-
"{""video"": {""path"": ""gradio_cached_examples/34/component 0/d2ac1c9664e80f60d50f/temporal.mp4"", ""url"": ""/file=/tmp/gradio/4bc133becbc469de8da700250f7f7df1103c6f56/temporal.mp4"", ""size"": null, ""orig_name"": ""temporal.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, ""subtitles"": null}",,,2024-07-18 23:33:26.912888
|
|
|
|
|
|