Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,619 Bytes
5041f6c be34e7c 5041f6c 656934c 5741e23 656934c 1112f1b 656934c 5041f6c 656934c 1112f1b 656934c 1112f1b 5041f6c 1112f1b 656934c 5041f6c d258d19 656934c 5b8a47b 656934c f7baa55 656934c 5041f6c 656934c 5041f6c 656934c 5041f6c 656934c 5041f6c 8e64bf0 656934c 5b8a47b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import gradio as gr
import torch
torch.jit.script = lambda f: f # Avoid script error in lambda
from t2v_metrics import VQAScore, list_all_vqascore_models
def update_model(model_name):
return VQAScore(model=model_name, device="cuda")
# Use global variables for model pipe and current model name
global model_pipe, cur_model_name
cur_model_name = "clip-flant5-xl"
model_pipe = update_model(cur_model_name)
# Ensure GPU context manager is imported correctly (assuming spaces is a module you have)
try:
from spaces import GPU
except ImportError:
GPU = lambda duration: (lambda f: f) # Dummy decorator if spaces.GPU is not available
@GPU(duration=20)
def generate(model_name, image, text):
global model_pipe, cur_model_name
if model_name != cur_model_name:
cur_model_name = model_name # Update the current model name
model_pipe = update_model(model_name)
print("Image:", image) # Debug: Print image path
print("Text:", text) # Debug: Print text input
print("Using model:", model_name)
try:
result = model_pipe(images=[image], texts=[text]).cpu()[0][0].item() # Perform the model inference
print("Result:", result)
except RuntimeError as e:
print(f"RuntimeError during model inference: {e}")
raise e
return result
@GPU(duration=20)
def rank_images(model_name, images, text):
global model_pipe, cur_model_name
if model_name != cur_model_name:
cur_model_name = model_name # Update the current model name
model_pipe = update_model(model_name)
images = [image_tuple[0] for image_tuple in images]
print("Images:", images) # Debug: Print image paths
print("Text:", text) # Debug: Print text input
print("Using model:", model_name)
try:
results = model_pipe(images=images, texts=[text]).cpu()[:, 0].tolist() # Perform the model inference on all images
print("Initial results: should be imgs x texts", results)
ranked_results = sorted(zip(images, results), key=lambda x: x[1], reverse=True) # Rank results
ranked_images = [img for img, score in ranked_results]
print("Ranked Results:", ranked_results)
except RuntimeError as e:
print(f"RuntimeError during model inference: {e}")
raise e
return ranked_images
# Create the first demo
demo_vqascore = gr.Interface(
fn=generate, # function to call
inputs=[
gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"),
gr.Image(type="filepath"),
gr.Textbox(label="Prompt")
], # define the types of inputs
outputs="number", # define the type of output
title="VQAScore", # title of the app
description="This model evaluates the similarity between an image and a text prompt."
)
# Create the second demo
demo_vqascore_ranking = gr.Interface(
fn=rank_images, # function to call
inputs=[
gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"),
gr.Gallery(label="Generated Images"),
gr.Textbox(label="Prompt")
], # define the types of inputs
outputs=gr.Gallery(label="Ranked Images"), # define the type of output
title="VQAScore Ranking", # title of the app
description="This model ranks a gallery of images based on their similarity to a text prompt."
)
# Combine the demos into a tabbed interface
tabbed_interface = gr.TabbedInterface([demo_vqascore, demo_vqascore_ranking], ["VQAScore", "VQAScore Ranking"])
# Launch the tabbed interface
tabbed_interface.queue()
tabbed_interface.launch(share=False)
|