File size: 7,229 Bytes
a62d4c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// @ts-nocheck
/* eslint-disable camelcase */
/* eslint-disable no-plusplus */
import cv, { Mat } from 'opencv-ts'
import { ensureModel } from './cache'
import { getCapabilities } from './util'
import type { modelType } from './cache'
// ort.env.debug = true
// ort.env.logLevel = 'verbose'
// ort.env.webgpu.profilingMode = 'default'

function loadImage(url: string): Promise<HTMLImageElement> {
  return new Promise((resolve, reject) => {
    const img = new Image()
    img.crossOrigin = 'Anonymous'
    img.onload = () => resolve(img)
    img.onerror = () => reject(new Error(`Failed to load image from ${url}`))
    img.src = url
  })
}
function imgProcess(img: Mat) {
  const channels = new cv.MatVector()
  cv.split(img, channels) // 分割通道

  const C = channels.size() // 通道数
  const H = img.rows // 图像高度
  const W = img.cols // 图像宽度

  const chwArray = new Uint8Array(C * H * W) // 创建新的数组来存储转换后的数据

  for (let c = 0; c < C; c++) {
    const channelData = channels.get(c).data // 获取单个通道的数据
    for (let h = 0; h < H; h++) {
      for (let w = 0; w < W; w++) {
        chwArray[c * H * W + h * W + w] = channelData[h * W + w]
        // chwArray[c * H * W + h * W + w] = channelData[h * W + w]
      }
    }
  }

  channels.delete() // 清理内存
  return chwArray // 返回转换后的数据
}
function markProcess(img: Mat) {
  const channels = new cv.MatVector()
  cv.split(img, channels) // 分割通道

  const C = 1 // 通道数
  const H = img.rows // 图像高度
  const W = img.cols // 图像宽度

  const chwArray = new Uint8Array(C * H * W) // 创建新的数组来存储转换后的数据

  for (let c = 0; c < C; c++) {
    const channelData = channels.get(0).data // 获取单个通道的数据
    for (let h = 0; h < H; h++) {
      for (let w = 0; w < W; w++) {
        chwArray[c * H * W + h * W + w] = (channelData[h * W + w] !== 255) * 255
      }
    }
  }

  channels.delete() // 清理内存
  return chwArray // 返回转换后的数据
}
function processImage(
  img: HTMLImageElement,
  canvasId?: string
): Promise<Uint8Array> {
  return new Promise((resolve, reject) => {
    try {
      const src = cv.imread(img)
      const src_rgb = new cv.Mat()
      // 将图像从RGBA转换为RGB
      cv.cvtColor(src, src_rgb, cv.COLOR_RGBA2RGB)
      if (canvasId) {
        cv.imshow(canvasId, src_rgb)
      }
      resolve(imgProcess(src_rgb))

      src.delete()
      src_rgb.delete()
    } catch (error) {
      reject(error)
    }
  })
}

function processMark(
  img: HTMLImageElement,
  canvasId?: string
): Promise<Uint8Array> {
  return new Promise((resolve, reject) => {
    try {
      const src = cv.imread(img)
      const src_grey = new cv.Mat()

      // 将图像从RGBA转换为二值化
      cv.cvtColor(src, src_grey, cv.COLOR_BGR2GRAY)

      if (canvasId) {
        cv.imshow(canvasId, src_grey)
      }

      resolve(markProcess(src_grey))

      src.delete()
    } catch (error) {
      reject(error)
    }
  })
}
function postProcess(uint8Data: Uint8Array, width: number, height: number) {
  const chwToHwcData = []
  const size = width * height

  for (let h = 0; h < height; h++) {
    for (let w = 0; w < width; w++) {
      for (let c = 0; c < 3; c++) {
        // RGB通道
        const chwIndex = c * size + h * width + w
        const pixelVal = uint8Data[chwIndex]
        let newPiex = pixelVal
        if (pixelVal > 255) {
          newPiex = 255
        } else if (pixelVal < 0) {
          newPiex = 0
        }
        chwToHwcData.push(newPiex) // 归一化反转
      }
      chwToHwcData.push(255) // Alpha通道
    }
  }
  return chwToHwcData
}

function imageDataToDataURL(imageData) {
  // 创建 canvas
  const canvas = document.createElement('canvas')
  canvas.width = imageData.width
  canvas.height = imageData.height

  // 绘制 imageData 到 canvas
  const ctx = canvas.getContext('2d')
  ctx.putImageData(imageData, 0, 0)

  // 导出为数据 URL
  return canvas.toDataURL()
}

function configEnv(capabilities) {
  ort.env.wasm.wasmPaths =
    'https://cdn.jsdelivr.net/npm/onnxruntime-web@1.16.3/dist/'
  if (capabilities.webgpu) {
    ort.env.wasm.numThreads = 1
  } else {
    if (capabilities.threads) {
      ort.env.wasm.numThreads = navigator.hardwareConcurrency ?? 4
    }
    if (capabilities.simd) {
      ort.env.wasm.simd = true
    }
    ort.env.wasm.proxy = true
  }
  console.log('env', ort.env.wasm)
}
const resizeMark = (
  image: HTMLImageElement,
  width: number,
  height: number
): Promise<HTMLImageElement> => {
  return new Promise((resolve, reject) => {
    const canvas = document.createElement('canvas')
    canvas.width = width
    canvas.height = height

    // 将图片绘制到canvas上,并调整大小
    const ctx = canvas.getContext('2d')
    if (!ctx) {
      reject(new Error('Unable to get canvas context'))
      return
    }
    ctx.drawImage(image, 0, 0, width, height)

    // 获取调整大小后的图片URL
    const resizedImageUrl = canvas.toDataURL()

    // 创建一个新的Image对象并设置其src为调整大小后的图片URL
    const resizedImage = new Image()
    resizedImage.onload = () => resolve(resizedImage)
    resizedImage.onerror = () =>
      reject(new Error('Failed to load resized image'))
    resizedImage.src = resizedImageUrl
  })
}
let model: ArrayBuffer | null = null
export default async function inpaint(
  imageFile: File | HTMLImageElement,
  maskBase64: string
) {
  console.time('sessionCreate')
  if (!model) {
    const capabilities = await getCapabilities()
    configEnv(capabilities)
    const modelBuffer = await ensureModel('inpaint')
    model = await ort.InferenceSession.create(modelBuffer, {
      executionProviders: [capabilities.webgpu ? 'webgpu' : 'wasm'],
    })
  }
  console.timeEnd('sessionCreate')
  console.time('preProcess')

  const [originalImg, originalMark] = await Promise.all([
    imageFile instanceof HTMLImageElement
      ? imageFile
      : loadImage(URL.createObjectURL(imageFile)),
    loadImage(maskBase64),
  ])

  const [img, mark] = await Promise.all([
    processImage(originalImg),
    processMark(
      await resizeMark(originalMark, originalImg.width, originalImg.height)
    ),
  ])

  const imageTensor = new ort.Tensor('uint8', img, [
    1,
    3,
    originalImg.height,
    originalImg.width,
  ])

  const maskTensor = new ort.Tensor('uint8', mark, [
    1,
    1,
    originalImg.height,
    originalImg.width,
  ])

  const Feed: {
    [key: string]: any
  } = {
    [model.inputNames[0]]: imageTensor,
    [model.inputNames[1]]: maskTensor,
  }

  console.timeEnd('preProcess')

  console.time('run')
  const results = await model.run(Feed)
  console.timeEnd('run')

  console.time('postProcess')
  const outsTensor = results[model.outputNames[0]]
  const chwToHwcData = postProcess(
    outsTensor.data,
    originalImg.width,
    originalImg.height
  )
  const imageData = new ImageData(
    new Uint8ClampedArray(chwToHwcData),
    originalImg.width,
    originalImg.height
  )
  console.log(imageData, 'imageData')
  const result = imageDataToDataURL(imageData)
  console.timeEnd('postProcess')

  return result
}