Zwea Htet
integrated langchain openai model
b821729
import os
import openai
from dotenv import load_dotenv
from langchain.chains import LLMChain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.vectorstores import FAISS
load_dotenv()
embeddings = OpenAIEmbeddings()
prompt_template = """Answer the question using the given context to the best of your ability.
If you don't know, answer I don't know.
Context: {context}
Topic: {topic}"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "topic"]
)
llm = OpenAI(temperature=0)
chain = LLMChain(llm=llm, prompt=PROMPT)
def initialize_index(index_name):
path = f"./vectorStores/{index_name}"
if os.path.exists(path=path):
return FAISS.load_local(folder_path=path, embeddings=embeddings)
else:
faiss = FAISS.from_texts("./data/updated_calregs.txt", embedding=embeddings)
faiss.save_local(path)
return faiss
# faiss = initialize_index("langOpen")
def answer_question(index, input):
docs = index.similarity_search(input, k=4)
inputs = [{"context": doc.page_content, "topic": input} for doc in docs]
result = chain.apply(inputs)[0]['text']
return result